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Abstract—With the development of information technology 

and wide application of smart devices, data increases 

exponentially and more and more data are stored in the cloud, 

whereas most of them are infrequently accessed. Data 

temperature indicates the access frequency of data, where hot data 

is frequently accessed while cold data is rarely accessed after a 

while, also called archival data appearing in many fields, such as 

health care, finance, education etc. For these domains, appropriate 

fault-tolerant method for data of different temperature can 

improve the overall performance, so we propose the hierarchical 

fault-tolerant method based on temperature (HFBT) that provides 

the data placement strategy based on load balancing to improve 

application performance (The efficiency of storage and read) and 

recovery performance simultaneously and then executes encoding 

transformation according to data temperature to reduce storage 

overhead, and finally exploits the pipeline repair based on slice-

level for archival data to decrease recovery time. This paper has 

three main contributions. (1) The reliability: HFBT realizes 

closely to 100% of the reliability. (2) The performance: HFBT 

saves 50% of storage overhead compared with 4-replicas and 

improves overall performance compared with other methods. 

Besides, the recovery speed of HFBT is up to 88.09% higher than 

that of RS (9, 6) code. (3) The flexibility: users can flexibly set the 

encoding transformation rules according to data characteristics.  

Keywords—archival data, fault-tolerance, data placement, 

encoding transformation, pipeline repair 

I. INTRODUCTION 

With  the popularity of internet and the increasement of 
intelligent devices, huge amounts of data are generated, and how 
to efficiently store large-scale data has become a research 
hotspot. Nowadays, in addition to store data on local devices, 
cloud storage is an excellent solution that  attracts  extensive 
attentions. The traditional storage system has limited capacity, 
while cloud storage system can arbitrarily add nodes to expand 
storage space, which provides better scalability. In addition, one 
server of the cloud storage system can utilize resources of other 
servers in the data center to realize resource sharing and save 
costs, and users access data and resources in the cloud at any 
time through the network. In summary, cloud storage system has 
the advantages of scalability, economy and flexibility, but it is 
built based on multiple servers and hard disks in servers 

generally have low reliability, which is prone to failure [1]. For 
example, over 50 machines appear unavailable every day in the 
Facebook cluster with storage capacity of hundreds of petabytes 
because of hard disks failure or power failure [2]. These failures 
cause data not being correctly accessed, so cloud storage system 
is necessary for establishing fantastic fault-tolerant mechanism 
to make sure the reliability.  

In general, replication and erasure code are the primary 
strategies to guarantee reliability for cloud storage system [3], 
and the former provides outstanding recovery performance, but 
incurs high storage expenses. The recovery performance refers 
that the data will be reconstructed by the fault-tolerant 
mechanism once data is lost, and the reconstruction procedure 
seriously affects read efficiency on users. The storage overhead 
of erasure code dramatically decreases when maintaining the 
same fault-tolerance, whereas it generates noteworthy 
reconstruction costs, of which Reed-Solomon code (RS) is the 
most popular, and the operations of encoding and decoding are 
completed based on Galois field (GF) [4]. Afterwards, 
researchers present massive optimized methods to remedy the 
imperfections, mainly including three categories: the 
optimization of RS code (OR), hybrid erasure code (HEC) and 
the combination of replication and erasure code (REC). The OR 
method focuses on how to reduce the recovery cost of single 
erasure code, such as the Local Recovery codes (LRC) [5] for 
reducing disk I/O and Regeneration codes (RGC) [6] for 
reducing network bandwidth. The HEC mechanism uses 
different structures or diverse kinds of erasure codes to balance 
storage overhead and recovery performance [7], [8], [9]. The 
REC method combines the complementary features of 
replication and erasure code to achieve better performance [10], 
[11], [12].  

Nevertheless, these solutions still have some defects. The 
OR method doesn’t consider the data access frequency and 
exploits static encoding that either sacrifices storage overhead or 
recovery performance. The HEC mechanism balances the 
storage overhead and recovery performance to some extent, but 
the processes of encoding and decoding have very high time 
complexity, which seriously affects the read efficiency on users, 
since erasure code with k data blocks and m redundancy blocks 
needs to read k blocks to recover the data block when a data 
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block is lost. Similar to the HEC mechanism, the REC method 
considers the storage cost and recovery performance, and 
multiple replicas improve the access efficiency of hot data, 
whereas cold data stored with erasure code still has high 
recovery delay. Besides, for the HEC mechanism and the REC 
method, the partition of data temperature greatly affects the 
storage overhead, so how to identify the temperature of data and 
utilize appropriate fault-tolerant method for data of different 
temperature is very significant. Furthermore, current approaches 
concentrate on how to reduce the recovery delay, but ignore that 
the efficiency of storage and read is more intuitive and important 
to users. Generally, the recovery performance is only measured 
when data is lost and then reconstructed, and the main impact on 
users is the efficiency of storage and read. Therefore, how to 
improve both application performance (The efficiency of 
storage and read) and the recovery performance to maximize 
overall performance at the same time is a huge challenge, but the 
existing approaches don't take this into account. 

Inspired by this insight, in this paper, taking medical data as 
research object, we propose a hierarchical fault-tolerant method 
based on temperature (HFBT). Medical treatment and clinical 
diagnosis generate lots of data which only are accessed when 
patients are in hospital. When the patient is discharged from 
hospital, the data related to the patient is rarely accessed again, 
that is archival data. However, these archival data need to be 
retained for a long time according to relevant medical rules, and 
it is essential to build fault-tolerance for these data in order to 
guarantee reliability. Different fault-tolerant methods have 
diverse storage cost and reconstruction overhead. If all data are 
used with the manner of the same fault-tolerant strategy, a large 
amount of storage space or recovery time will be wasted. By 
analyzing these characteristics of medical data and combining 
the application performance with recovery performance, on the 
basis of REC method, we present the data placement strategy 
based on load balancing to improve the overall performance 
(Storage, read and recovery) when placing data blocks. Then, 
we propose the flexible encoding transformation strategy that 
identifies the temperature of data to decrease storage overhead 
of archival data, and meanwhile utilize the pipeline repair based 
on slice-level which makes up for the drawback of erasure code 
with high recovery delay to speed up reconstruction of archival 
data. The key contributions are as follows. 

(1) We analyze the access characteristics of medical data and 
propose an effective hierarchical fault-tolerant method for 
archival data that is rarely studied. Although taking medical data 
as research object, it also can be referenced by other fields, such 
as education, finance, etc.  

(2) On the basis of the REC method, HFBT considers 
application performance and recovery performance 
simultaneously, which effectively improves the efficiency of 
storage, read and recovery. 

(3) The flexible encoding transformation reduces storage 
overhead and the pipeline repair for archival data makes up for 
the defect of erasure code with high recovery delay while taking 
advantage of the benefits of replication and erasure code.  

The remainder of this paper is organized as follows. In 
Section II, the characteristics of medical data and related works 
are introduced. In Section III, our methodology is described in 

detail. Comprehensive experiments are carried out in Section IV 
and this paper is concluded in Section V. 

II. BACKGROUND AND RELATED WORKS  

This section analyses characteristics of medical data, and 
then introduces related works of storing archival data. 

A. Characteristics of Medical Data 

In 2017, Stanford Medicine Health Trends Report predicted 
that the amount of medical health data will reach over 2,314 EB 
by 2020 [13], for this reason that on the one hand, hospitals, 
clinical experiments, pharmaceutical analyses and medical 
smart wearables devices generate a mass of medical data, on the 
other hand, and medical data need to be retained for a long time 
to provide more complete and accurate services [14], [15]. 
Nevertheless, certain medical data is requisite for keeping online, 
and most of them is timeliness, which is rarely accessed after  a 
while. For instance, medical expenses, inspection reports, 
radiotherapy records, CT images, MRI images are almost no 
longer  accessed when patients are discharged from hospital, 
which is called archival data in this paper.  

The preservation of archival data is the very meaningful, so 
different countries formulate diverse proposals for archival data, 
whereas there has one thing in common that archival medical 
data is conserved for a long time, as illustrated in the TABLE I. 

TABLE I.  SUMMARY OF ARCHIVAL DATA 

Country Date Organization Relevant proposals 

USA 2000 

American Society 

for Radiation 

Oncology [16] 

All radiotherapy-related 

records need to be kept for 

at least 5 years after death. 

Australia 2005 

The Royal 

Australian and New 

Zealand College of 
Radiologists & The 

Faculty of Oncology 

[17] 

Records and prescriptions 

need to be preserved 

throughout the lifetime, 
preferably up to 5 years 

after death, and images are 

reserved for 7 years. 

UK 2016 
National Health 
Service [18]  

Medical data must be 

conserved for 30-year or 8-

year after death. 

China 2017 

The Ministry of 

Health of the 

People's Republic of 
China [19] 

The records of outpatient 

and inpatient need to be 

preserved over 15 years, 30 
year respectively.  

Great importance is attached to the preservation of medical 
data, where archival data is infrequently accessed, but takes up 
a large proportion of storage space. Therefore, different fault-
tolerant mechanisms are requisite for online data and archival 
data in order to decrease recovery time and storage space. 
Meanwhile, it is important to periodically switch the fault-
tolerance of archival data to one that requires less storage 
overhead. 

B. Related Works  

Researchers rarely focus on archival data to improve the 
overall performance of storage system. Gupta et al. [20] 
discovered that data need to be frequently moved to archival 
warehouse by analyzing structural data, and proposed the 
proactive archiving solution to accelerate query performance, 
without considering storage overhead and recovery performance. 
Chen et al. [21] presented parallel archiving method to reduce 
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archiving time in view of the high cost of converting three-
replicas into RS code, whereas it doesn’t take into account the 
access frequency of data. Considering storage overhead, 
recovery performance and access frequency, Xia et al. [7] 
proposed HACFS that uses two different structures of erasure 
codes to dynamically adapt workload changes. Wang et al. [8] 
utilized LRC code and Hitchhiker code for data of different 
temperatures. In the process of encoding conversion, some 
original blocks are utilized to the maximum extent, which 
reduces the number of transferring blocks and the reconstruction 
time. Qiu et al. [9] employed RS code for writing-intensive tasks 
and Minimum Storage Regenerating (MSR) code for reading-
intensive or frequently reconstructed tasks to balance the 
overhead between storage and recovery, but the calculation of 
MSR is very complicated. Literatures [7], [8], [9] employ 
different structures or diverse categories of erasure codes, which 
takes up lots of CPU, IO resources when encoding and decoding, 
and the performance of hot data is very poor. Besides, if all data 
are stored with erasure code, the recovery delay of data seriously 
affects the read efficiency on users. Therefore, Ma et al. [10] 
presented CAROM that combines replication and erasure code 
where files are stored by erasure code in backup data center. 
When a request initiates a write operation on the file, if the 
requested file isn’t cached, the data is reconstructed by erasure 
code and then the reconstructed data is cached to master data 
center. When the file is cached, operations of read and write are 
directly oriented to replicas. Mao et al. [11] put forward HyRD 
that utilizes erasure code for large files and replication for small 
files, metadata, large files frequently accessed, which achieves 
rapid response and effective storage. Through discrete event 
simulation, Gribaudo et al. proved [12] that the combination of 
replication and erasure code can reduce the overhead and 
improve the reliability to the greatest extent. However, 
literatures [10], [11], [12] utilize erasure code for data accessed 
infrequently or large files, so the recovery delay is very high. 
Besides, the above methods don’t describe the partition of data 
temperature in detail, and also don’t consider the application 
performance of practical storage system. 

Different from the above approaches, based on the REC 
method, we consider the application performance and recovery 
performance simultaneously, and propose the data placement 
strategy based on load balancing to improve the efficiency of 
storage, access, and recovery. Furthermore, the flexible 
encoding transformation method decreases storage overhead, 
and the pipeline repair based on slice-level speeds up 
reconstruction of archival data, which makes up for the defect of 
erasure code with high recovery delay while taking advantage of 
the benefits of replication and erasure code. To our knowledge, 
none of current approaches combine the pipeline repair and data 
temperature to adapt different workloads, and most of them 
sacrifice the storage overhead or recovery performance. 

III. OUR METHODOLOGY 

In this section, we briefly introduce our motivation, then 
elaborate each module of HFBT, and finally describe the design 
architecture. 

A. Our Motivation  

The performance of applications and the storage overhead of 
system are affected by fault-tolerant ways, and it is necessary to 

establish reliable mechanisms for data, so we propose an 
effective fault-tolerant method HFBT to maximize the system 
performance and reduce the storage overhead. The framework is 
shown in the Fig. 1 that consists of three modules (Data 
placement, Encoding transformation and Pipeline repair). We 
mainly face the following challenges. 

(1) Diverse nodes have diverse hardware configurations, 
different performance and various workloads. How to take full 
advantage of the resources of every node and evenly distribute 
data to obtain the maximum application performance is a 
significant problem. 

(2) Data in different periods has different access frequency, 
particularly for archival data which is almost no longer accessed 
after a period of time, but it takes up a large proportion of space. 
If all data always are stored by the same fault-tolerant method, 
there is no doubt that lots of storage spaces or recovery time will 
be wasted. Therefore, we need to design an encoding 
transformation mechanism that periodically changes the fault-
tolerant way of archival data with the manner of a low storage 
overhead. 

(3) The HEC method and the REC method with erasure code 
reduce storage overhead but lead to high recovery delay and 
affect the read efficiency on users. Some methods focus to use 
erasure code with higher storage overhead to obtain less 
recovery delay since different erasure codes have different 
storage costs, which fails to obtain the optimal storage overhead 
and recovery performance. However, it is very important to 
minimize storage costs while reducing the recovery delay as 
much as possible.  

Data placement 

strategy

The pipeline 

repair 

The encoding 

transformation

Replication 

Encoding 

transformation

High 

frequency

access

Low 

Frequency

access
RS code

Heavy workload

Slight workload

Blk1 Blk2 Blk3 Blk4 Blk5 Blk6 R

 

Fig. 1. The framework of HFBT. 

B. Data Placement Strategy Based on Load Balancing 

In this section, we will analyze the block placement 
problems caused by replication and RS code, and then introduce 
the data placement strategy based on load balancing. 

1) Problem analysis 
Cloud storage system generally uses replication and erasure 

code for fault-tolerance, where each block needs to be stored in 
different nodes. Especially for erasure code, once data is lost, the 
data needs to be reconstructed, which consumes lots of CPU, IO, 
memory, and results in poor application performance. For a 
cluster containing 12 Datanodes, 3-replicas will randomly select 
3 nodes, and RS (9, 6) code will optionally choose 9 nodes (This 
paper mainly discusses inter-node fault-tolerance rather than 
rack-level). As shown in Fig. 2, there are 12 nodes where nodes 
ni, nj, and nk have numerous calculation tasks and other nodes 
have slight workload. If 3-replicas or RS code selects nodes ni, 
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nj, and nk, performance of the system will be terrible. Next, we 
will discuss the cost of choosing different nodes. 

Assuming l data blocks {b1, b2, …, bl}, m nodes {n1, n2, …, 
nm}, the block size bsize, Rj, Wj, Yj is the frequency of reading, 
writing, and recovering of nj. FRj, FWj and FT is the speed of 
reading and writing, the seeking time of nj. CRj, CWj, CYj is the 
cost of reading, writing, recovering of nj.  

The cost of writing a block bk (k{1, l}) and reading the bk 
from node nj ( {1, }j m ) is: 

size
jk

jk

b
CW FT

FW
= +                                   (1) 

 size
jk

jk

b
CR FT

FR
= +                                     (2) 

For RS code with d data blocks and r redundancy blocks, the 
cost of recovering the bk is shown (3), where TR is the time of 
transferring a block from a node to another node (Assuming all 
nodes have the same bandwidth). 

( )size
jk

jk

b
CY d FT TR

FR
= + +                           (3) 

The total cost of data access is: 

j jk jk jk jk jk jkCA CR R CW W CY Y=  +  +                 (4) 

Assuming that nodes are accessed with the same frequency 
and the seeking time. The cost comparison between node ni and 
node nj is: 

( )( ) ( )size size size size
j i

jk ik jk ik

b b b b
CA CA R Yd W

FR FR FW FW
− = + − + −      (5) 

When a node has a faster rate of reading and writing, the 
total cost of reading, writing, and recovering for the node is 
smaller.  

2) Data placement strategy 
The speed of reading and writing is mainly affected by the  

resources of node, such as CPU, memory and IO. However, the 
Hadoop [22] with random placement (RP) strategy doesn’t fully 
consider the heterogeneity of nodes, which leads to the load 
imbalance of the system. Therefore, we put forward the data 
placement strategy based on load balancing. When placing 
blocks, we consider the resource utilization of the system and 
then select nodes with light workload. The workload of node is 
measured by the following indicators.  

Memory utilization is the ratio of the memory Mu used by 
the process to the total memory Mt. The memory utilization M is 
denoted by (6). 

               

=

,

,

u t

u

u

t

t

M
M M

MM

M M


=







  (6) 

CPU utilization is the ratio of the CPU execution time Cu of 
the process to the total time Ct, which represents the running 

situation of the process in a certain period, the lower the CPU 
utilization, the less the running process. The calculation is 
shown in (7). 

               

=C

,

,

u t

u t

u

t

C
C C
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C


=





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  (7) 

I/O utilization is the ratio of the actual transfer rate Iu of the 
disk to the maximum transfer rate It provided by the parameter 
of the disk, as shown in (8). 

                

=

,

,

u t

u

u
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t

I
I I

II

I I


=


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

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  (8) 

On the premise of considering above indicators, if all data 
are allocated to a node, the node network will be blocked and 
the reading efficiency will be affected. In order to make data 
evenly distributed among nodes, occupied storage space should 
also be considered. Storage occupancy S is the ratio of the 
storage space Su used by node to the total storage capacity St, the 
calculation shown in (9). 

                

=

,

,

u t

u

u

t

t

S
S S

SS

S S


=







  (9) 

In order to improve the utilization of resources, blocks 
should be placed on nodes with slight workload. The evaluation 
function is constructed according to these indicators, and the 
workload of node is evaluated by (10). The evaluation function 
is based on the linear weighting method [23] that obtains the 
corresponding weights in accordance with the importance of 
each indicator. η

i
 represents the weight coefficient of each 

indicator where the larger η
i
 indicates the more significant 

impact on the node performance. 

        
1 2 3 4

W M C I S   = + + +   (10) 

4

1

1
i

i


=

=      (11) 

Weight coefficients are determined through the influence of 
indicators on the node performance. Due to node performance is 
mainly influenced by the memory, CPU, I/O, and storage space, 
and these factors belong to different categories. Hence, the 
corresponding weights are determined according to the 
hierarchy analytic method [24] that is a hierarchical weight 
decision combining quantitative and qualitative analyses. The 
evaluation objective is decomposed, and the complex problem 
is divided into related factors in accordance with these 
evaluation indicators. Then, quantitative decision is made on the 
importance of each indicator through the combination of 
objective analyses and subjective judgments. Therefore, the 
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value of η
i
 will be given in combination with experimental 

analyses in Section IV. 

Heavy workload

Slight workload

ni

nk

nj ni nj

nk

 

Fig. 2. The data placement strategy. 

C. The Flexible Encoding Transformation of Replication and 

Erasure Code 

In this section, we analyze the performance of replication 
and erasure code, and then describe in detail the encoding 
transformation according to the access rules of medical data. 

1) The performance analyses of replication and erasure 

code 

• The definition of erasure code 
Replication and RS code are widely used for fault-tolerance 

in distributed file system, such as Hadoop Distributed File 
System (HDFS) [22] and Google File System (GFS) [25]. 
Generally, replication strategy copies n replicas on n different 
nodes to tolerate n failures, while RS code performs more 
complicated calculation based on Galois field to maintain the 
same fault-tolerance. RS code is defined with (n, k) where n and 
k are the number of total blocks and data blocks respectively, 
(k > n-k). The (n, k) indicates that a file is divided into k data 
blocks and n-k parity blocks. The process of encoding and 
decoding of RS code is as follows. 

The definition of encoding: Given k data blocks (b1, b2, …, 
bk) and the positive integer m (m=n-k), RS code can generate m 
parity blocks according to the k data blocks, as shown in (12) 
where each parity block can be represented by linear 
combinations of data blocks. Among GijFq, i(1, m), j(1, k), 
Gij, Dj and Pi are the coefficient of generator matrix, the data 
block, and the parity block, respectively, and Fq is the GF field 
with q elements. In order to ensure the fault-tolerance between 
nodes, the k + m blocks are stored in different nodes. 

1 2 3 1 2 3( , , , ..., ) ( , , , ..., )T

i i i i ik kP G G G G D D D D= 　 　         (12) 

The definition of decoding: Given discretionary k and m, the 
original data can be generated according to k data blocks and m 
parity blocks. That is, RS code can tolerate m data block failures 
at most, as shown in (13), of which D is the missing data block, 
and λi , Ri  are the coefficient of the decoding matrix and 
remainder blocks, λi Fq. 

1

k

i i

i

D R
=

=                                  (13) 

As shown in Fig. 3 and Fig. 4, there are six data blocks and 
three parity blocks, and the parity block P is obtained by the 
generator matrix G multiplying the data block D. If the data 
blocks D2, D3, and D5 lose, decoding algorithm inverses the 

encoding matrix, and then multiplies by remaining k blocks, 
which restores the lost data blocks. 
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Fig. 3. The encoding of RS (9, 6) code. 
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Fig. 4. The decoding of RS (9, 6) code. 

• The comparison of storage overhead and recovery 

performance  
The multiple replicas of replication occupy a mass of storage 

space. RS code economizes storage overhead, whereas the 
encoding and decoding is very complex, which leads to high 
recovery delay of data reconstruction. When the file size is S and 
the block size is S/k (n nodes, k data blocks), the comparisons of 
storage overhead and recovery performance of RS code and 
replication are shown in TABLE II.   

TABLE II.  THE STORAGE OVERHEAD AND RECOVERY PERFORMANCE 

Method Fault-tolerance Storage costs Bandwidth of  

recovering a 

block 

RS code n-k nS/k S 

Replication n-k (n-k+1)S S/k 

It is difficult to balance storage overhead and recovery time. 
Hot data is frequently accessed and needs low recovery delay, 
while archival data occupies a large proportion storage space 
and has lower requirements on read performance, so replication 
and RS code applied for hot data and archival data can achieve 
better performance. However, the number of replicas and the 
parameters of RS code are also important to maximize reliability 
and reduce storage overhead. 

• The analysis of reliability 
When the cloud storage system has n nodes, the reliability of 

each node is r and the redundancy factor is d (d is the physical 
space size divided by logical space size of data block). The 
larger d indicates more storage overhead.  

The system reliability Pre with replication is shown as (14), 
where d is the number of replicas. 

                1 (1 )
d

re
P r= − −    (14) 
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The system reliability Prs with RS (n, k) code is shown in 
(15), where k and n are the number of data blocks and total 
blocks, d=n/k.  

          
0

. .(1 )

kd k

i kd i i

rs kd

i

P C r r

−

−

=

= −    (15) 

 

Fig. 5. The comparison of reliability. 

The comparison of system reliability is shown in Fig. 5, 

where the x-axis is the redundancy factor d (r=0.9). When d   
1.5, the reliability of RS code is higher than that of the 
replication and closely to 100%. Moreover, with the 
increasement of the number of nodes, the reliability of RS code 
is higher. The reliability of replication is closely to 100% until d 

  3. Therefore, 3-replicas (d=3) for hot data and RS (9, 6) code 
(d=1.5) for archival data can acquire closely 100% reliability 
and mitigate hot issues of data.  

2) The access rules of medical data 
For medical system, the majority of data access cycle is 

relatively short. When patients are discharge from the hospital 
after recovery or outpatient treatment, the previous data are 
scarcely accessed. Relevant statistical analyses reveal that data 
access accords with the Pareto distribution, also called the 80/20 
rule [26], [27], which describes plentiful real-world phenomena, 
the probability density function as shown in (16), where x and 
𝑥𝑚  respectively are a random variable, the smallest positive 
number of x, 𝛼 > 0. 

The analysis means that 20% data is accessed frequently, and 
80% data is rarely accessed after a certain period. Besides, we 
collected the medical data from the cooperative eye hospital and 
the access characteristics also conform to this distribution. To 
maximize the overall performance, rarely accessed data should 
use the fault-tolerant approach with low storage overhead, and 
frequently accessed data should use the fault-tolerant method 
with superior recovery performance. Although data access 
generally conforms to the Pareto distribution, the temperature of 
data will change with the increase of data. The recovery 
performance of different fault-tolerant methods is inversely 
proportional to the storage cost, so the encoding transformation 
of data is very important to balance the storage overhead and 
recovery cost of the fault-tolerant system. 
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3) The encoding transformation 

The encoding transformation need consider the temperature 
variation and design the switching rule. Since archival data is 
almost never converted to hot data, the temperature variation 
only considers the cooling situation of hot data. When the 
amount of hot data is more than whc of total capacity, the fault-
tolerant mechanism of cooling hot data is switched to RS code. 
whc and 1-whc are the ratio of hot data and archival data (Hot data 
and archived data are stored by replication and erasure code, 
respectively). Literature [26] demonstrates that 30% data is 
divided into hot data, which provides the best solution for cloud 
storage system. Based on Pareto distribution and [26], the 
subsequent experiments set the whc as 20% because the pipeline 
repair based on slice-level is leveraged to speed up the 
reconstruction of archival data, which makes up for the defect of 
RS code with high recovery delay. In practical scenarios, users 
can flexibly set whc according to data characteristics. Even if the 
proportion of hot data exceeds 20% at some time, this situation 
is temporary, moreover, and the failure of data will not happen 
all the time, so data keeps this distribution within the average 
range. 

For the switching rule, common switching ideas are FIFO 
(First in first out), LRU (Least recently used), and LFU (Least 
frequently used) [28]. FIFO and LRU only consider the locality 
of time and don’t combine with data access frequency, which is 
unsuitable for practical storage system. LFU describes the 
access frequency of data and switches data based on historical 
access frequency, which is reasonable for practical application 
scenarios because data recently accessed has greater probability 
of being accessed in the future. Hence, we propose the encoding 
transformation method based on time-slice LFU idea that 
switches the fault-tolerant ways where the time is divided into 
fine-grained slices to count more accurate access frequency, and 
the access frequency is counted in each time slice. Besides, the 
access frequency of file is not simply counted, but larger weight 
is given to the most recently accessed file based on LFU idea. 
The pseudocode of the encoding transformation is shown in 
algorithm 1, and definitions of relevant parameters and the 
calculation of access frequency of files are as follows.  

• The total time T = ⋃ {Tj}
t
j=1 , t represents the number of time 

slices. 

• Data set D= ⋃ {Di}
z
i=1 , A= ⋃ ⋃ {Aij}

t
j=1

z
i=1 , z and Aij represent 

the number of files, the total accesses number of file Di in 
time slice j respectively.  

• File size S= ⋃ {Si}
z
i=1 , Si represents the size of file Di. 

• The accesses number of Di in time slice j:   

                      
1ij ij ij

I A A
−

= −    (17) 

• On account of the data recently accessed with greater 
probability of being accessed, the access frequency of file is 
not simply counted. The files recently accessed are given 
larger weight, the access frequency f(Di) of file Di shown as 
(18), where PT is the time slice. 
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Algorithm 1 The encoding transformation 
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Input: sets T, D, A, S, whc 

1: set w1, Stotal1 (Stotal1 is the total size of all files), ft1=0, iindex2 

2: if in the j-th time slice the file Di is accessed then 

3:     the access frequency f(Di) is calculated according to (18) 
4: end if 

5: if in the j-th time slice the file Di is inserted and the size of 

Di is Si then 

6:     sort files D by access frequency and obtain descending 

sequence {f1, f2, …, fz} 

7:     f(Di)=f1. 

8:     set the fault-tolerance of Di by replication 

9: end if 

10: count new access frequency and obtain descending 

sequence {f1’, f2’, …, fz+1’} 
11: w1= whc  (Stotal1+ Si) 

12: for i=1 → z+1 do 

13:     ft1= ft1+fi’ 

14:     if ft1 > w1 then 

15:         set iindex2=i 

16:     end if 

17: end for 

18: the fault-tolerance of files between iindex1 and iindex2 is 

converted to RS code (iindex1 is the separation index value 

before the data is accessed or inserted) 

Through the switching method, only the fault-tolerant mode 
of cooling hot data needs to be changed according to the data 
access characteristics, unlike other methods ([7], [8], [9]) to 
perform the encoding transformation of all files, which greatly 
reduces the time complexity and computation complexity. The 
differences between HFBT and HyRD are that HyRD only uses 
erasure code for large files and replication for small files and 
metadata, and doesn’t consider the data block placement of 
affecting application performance, the temperature of data and 
the encoding transformation caused by temperature change. In 
addition, HyRD utilizes replication for metadata to reduce 
access delay. However, metadata is stored in memory, which 
takes up more memory overhead, so this paper employs pipeline 
repair based on slice-level to reduce recovery delay without 
increasing storage overhead. 

D. The Pipeline Repair Based on Slice-level  

Traditional recovery method of HDFS transfers k blocks to 
requestor R, which causes the congested downlink of R. The 
pipeline method makes full use of the bandwidth of each node 
and transmits data blocks in parallel. However, none of current 
approaches combine the pipeline repair to adapt different 
temperature of data, and most of them sacrifice the expense of 
storage space or recovery time, so we propose the pipeline repair 
based on slice-level (PRBS) to accelerate the recovery of 
archival data without increasing storage overhead and make 
better use of the advantages of the combination of replication 
and erasure code to adapt to different temperature, which 
reduces the reconstruction time to the same as the normal read. 

PRBS divides each block into smaller slices to make better 
utilize bandwidth resources. If there are k data blocks {b1, b2, …, 
bk} and each block bi (1<i<k) is divided into s slices {bi1, bi2, …, 
bis}, the transfer time of bi is 1 timeslot and the time of 
transferring a slice bij (1<j<s) is 1/ s timeslots. There have s paths 
that transmit s slices concurrently, whereas the bandwidth 

resource of each path doesn’t conflict with each other. Each path 
has k blocks and requestor R, so the transfer time of every path 
is ks timeslots. For the first path N1→N2→…→Nk→R , N1 
transmits β

1
b11 to N2, and N2 combines β1

b11+β
2
b21 to N3, and 

then the process is repeated until Nk sends the first slice of all the 
blocks to R, that is β

1
b11+β

2
b21+…+β

k
bk1→R, where β

i
 is the 

coefficient of the decoding matrix. Therefore, the total time of 
recovering a block is (s-1)/s+k/s=1+(k-1)/s. In general, k is fixed, 
but s is elastic, and the total time is 1 timeslot when s is enough 
large. As shown in Fig. 6, the total time of recovering a block is 
7/4 timeslots, which is 9/4 timeslots less than traditional 
recovery of HDFS.    

N1 N2 N3 N4

Blk1 Blk2 Blk3 Blk4

R

R

Traditional recovery method

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

t0 t1 t2 t3

S1

S2

S3

S4

 

Fig. 6. The pipeline repair based on slice-level. 

E. The Design Architecture 

HFBT is designed for the application layer and storage layer, 
as shown in Fig. 7, where the application layer identifies data 
temperature, selects fault-tolerant methods and executes the 
encoding transformation according to the data access frequency. 
The storage layer singles out the appropriate Datanode based on 
the data placement strategy, and then leverages PRBS to 
accelerate recovery of archival data when data blocks are lost.   

The data placement strategy calculates machine workloads 
and selects nodes with slight workload before storing blocks. 
PRBS mainly includes coordinator and helper where 
coordinator is responsible for recovery, and helper runs on each 
Datanode, which takes charge of dividing slices and transferring 
blocks. If a block is lost, the storage layer creates Requestor that 
transfers block id to Coordinator. Afterwards, Coordinator 
requests Namenode to obtain k data block for the same stripe, 
and then informs all helpers about the location of each block. 
Eventually, helpers divide blocks into slices and transfer these 
slices from Datanode to Requestor. 

Datanode Datanode DatanodeNamenode

Coordinator Requestor

Temperature 

identification
Application layer

Storage layer

Fault-tolerant 

decision

Data 

placement

Control flow Data flow

Encoding 

transformation

 

Fig. 7. The design architecture.  

IV. EXPERIMENTAL ANALYSES 
The prototype is deployed on Hadoop3.1.1 and each node is 

configured with Ubuntu16.04 system of Intel-Xeon-
CPU@3.0GHZ, 4G memory, gigabit network, and 200G disk. 
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HFBT is evaluated in four main aspects: (1) Replication using 
the data placement based on load balancing tests different sizes 
of blocks compared with RP of HDFS. (2) RS code using the 
data placement of based on load balancing tests different sizes 
of blocks compared with RP of HDFS. (3) The different size of 
blocks and slices on pipeline repair in order to determine the best 
parameters. (4) The performance of HFBT is compared with that 
of 4-replicas, RS (9, 6) code, and the HyRD method while 
maintaining the same fault-tolerance, where access logs are 
obtained according to the PostMark benchmark [29] that creates 
a pool of files to generate random sized files, including text files 
and image files etc., with files ranging from 1 KB to 100M. 

A. Replication Using the Data Placement Strategy Based on 

Load Balancing 

 The performance of node is affected by CPU, memory, and 
IO, so we change one of three factors, keep the other two 
unchanged, and test the influence of these factors on the 
Datanode when the fault-tolerance is 3-replicas. As shown in Fig. 
8, the cluster has 10 nodes with 1 Namenode and 9 Datanodes 
(node1-node9), where (a), (b) and (c) set 3 nodes with 50% CPU 
workload, 50% memory workload, and 50% IO workload 
respectively. As can be seen from the figure, 3-replicas using the 
data placement strategy based on load balancing achieves better 
performance than RP of HDFS.  

 

(a) CPU workload.                              (b) Memory workload. 

 

(c) IO  workload.                       (d) The replicas distribution of RP. 

 

(e) Hybrid workloads. 

Fig. 8. The comparison between replication based on load balancing and RP. 

In general, users more concern read performance, and thus 
we measure the weight of these indicators according to read 
performance. When the size of data block is larger, the 
performance of 3-replicas based on load balancing is 
approximately 1:2:3 better than that of RP, as shown in (a), (b) 
and (c). For example, when the size of data block is 128M, the 
3-replicas based on load balancing reduces the read time than 
RP by 17.18%, 36.65%, and 57.06% under 50% CPU workload, 
50% memory workload, and 50% IO workload, respectively, 
where the average results are the average time of 10 tests. 
Consequently, the ratios of η

1
, η

2
, η

3
 are set to be 2:1:3 

according to the hierarchy analytic method. Besides, since the 
storage space has feeble influence, whereas data need to be 
evenly distributed across each node, the ratio of η

4
 is set to be 

equal 1. Eventually, the value of η
1
, η

2
, η

3
, η

4
 are 2/7, 1/7, 3/7, 

1/7. 

After determining the weights of indicators, we conduct the 
experiment of hybrid workloads, as shown in (d), (e), node 1 and 
node 2 with 50% CPU workload, node 3 and node 4 with 50% 
IO workload, node 5 and node 6 with 50% memory workload, 
node 7 with 50% CPU, 50% IO and 50% memory workloads, 
node 8 and node 9 without workload. As shown in (d), 10 tests 
are executed with 3-replicas of RP under different sizes blocks 
and per block of different size produces 30 distributions. The x-
axis and y-axis stand for the Datanode and the distribution times 
of RP replicas on nodes respectively, which indicates that the 
block placement strategy of RP is random. Our method selects 
node 1, node 8, node 9 or node 2, node 8, node 9 with slight 
workloads. The (e) shows that the storage performance and read 
performance of 3-replicas based on load balancing are superior 
to RP under hybrid workloads.  

B. RS Code Using the Data Placement Strategy Based on Load 

Balancing 

We experiment on RS (6, 3) code and RS (9, 6) code in 10-
node cluster with 1 Namenode and 9 Datanodes and 13-node 
cluster with 1 Namenode and 12 Datanodes, where node 2, node 
4, and node 6 occupy 50% CPU workload, 50% memory 
workload, and 50% IO workload respectively. As shown in Fig. 
9, the storage performance, read performance and recovery 
performance of RS (6, 3) code and RS (9, 6) code based on load 
balancing are better than those of RP. When the block size is 
64M and 128M, the recovery time of RS (9, 6) code based on 
load balancing decreases by 21.38%, 37.52%, 53.82% and 
24.08%, 33.97%, 49.71% compared with RP in the case of one 
block loss, two block losses and three block losses respectively 
since workloads on nodes consume lots of resources and affect 
the decoding process. 

 

(a) The time of storage and read under hybrid workloads.  
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(b) Recovery time under hybrid workloads. 

Fig. 9. The comparison between RS code based on load balancing and RP. 

C. The Pipeline Repair Based on Slice-level  

The pipeline repair based on slice-level (PRBS) is utilized to 
accelerate the reconstruction of archival data. We compare the 
recovery performance of PRBS with different sizes of slices and 
blocks, as shown in Fig. 10. As can be seen from the left figure, 
when the block is fixed at 64M, the recovery time gradually 
decreases with the increasement of slice size since the number 
of slices is larger when the size of slice is smaller, which 
increases the time of dividing slices. Furthermore, PRBS 
achieves better performance than HDFS when one block, two 
blocks and three blocks are lost. When the slice size is greater 
than or equal to 256K, the slope gradually decreases and tends 
to be flat. Therefore, the size of slice is selected as 256K in 
subsequent experiments.  

 
Fig. 10. Different sizes of slices and blocks. 

When the size of slice is fixed at 256K, we compare the 
recovery performance of different block sizes, as shown in the 
right of Fig. 10. While one block, two blocks and three blocks 
are lost, the recovery time of PRBS is smaller than that of HDFS, 
and when the block size is 64M and 128M, the recovery time of 
PRBS reduces by 36.6%, 43.31%, 49.09% and 45.94%, 52.74%, 
58.24% compared with HDFS. Because our file is less than or 
equal to 100M, the subsequent block size is set as 64M. 

D. Performance Analyses of HFBT 

HFBT employs different strategies for fault-tolerance and 
carries out the encoding transformation based on data 
temperature, which realizes the equilibrium of the storage 
overhead and recovery time, and further utilizes the block 
placement strategy based on load balancing to improve the 
overall performance and accelerates the recovery of archival 
data by  leveraging PRBS. As shown in the left of Fig. 11, we 
compare HFBT (4-replicas for hot data and RS (9, 6) code for 
archival data), 4-replicas, RS (9, 6) code and HyRD (4-replicas 
for small files and metadata, RS (9, 6) code for large files) when 
maintaining the same fault-tolerance. When 1 node, 2 nodes and 

3 nodes fail, the recovery speed of HFBT is 37.54%, 43.72% 
and 50.03% higher than that of HyRD, furthermore, and the 
recovery speed of HFBT is 69.92%, 73.57%, 88.09% higher 
than that of RS (9, 6) code. Although the recovery speed of 
HFBT is not as fast as that of 4-replicas, its storage overhead is 
half of 4-replicas, which saves 50% storage space. We also 
compare the recovery speed of HFBT based on load balancing 
with HyRD based on RP, when 3 nodes of 12 Datanodes are set 
to 50% CPU workload, 50% memory workload, and 50% IO 
workload respectively, as shown in the right of  Fig. 11. The 
recovery speed of HFBT based on load balancing is 1.75X, 
1.97X, and 1.98X of the HyRD based on RP when 1 node, 2 
nodes and 3 nodes fail, which demonstrates that the hierarchical 
fault-tolerant method combined with the data placement strategy 
based on load balancing achieves better performance. 

  

Fig. 11. Comparison of HFBT with other methods. 

 

Fig. 12. The time of encoding transformation. 

As temperature changes with time and data access, we 
simulate data access. 200M, 300M, 400M, 500M and 600M data 
will be inserted every 10 minutes and 20% of hot data will be 
accessed. The encoding transformation time between HFBT and 
other methods is shown in Figure 12 (There is no encoding 
conversion for HyRD since the encoding of HyRD is based on 
file size and data type) where HFBT only converts encoding of 
part data and its transformation time is minimal. Therefore, 
when the encoding transformation occurs, there has weeny 
impact on users, but saves massive storage overhead. 

V. CONCLUSION AND FUTURE WORK 

The failure of large-scale cloud storage system is frequent, 
whereas replication and erasure code incur great storage 
overhead and recovery cost respectively. How to balance storage 
overhead and recovery time to achieve maximum performance 
is a research hotspot of cloud storage system and cloud service 
center. Although there are lots of improved approaches, most of 
them don’t simultaneously combine application performance 
with recovery performance and sacrifice the storage cost when 
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reducing the recovery delay. In addition, the characteristics of 
archival data aren’t considered. Therefore, we propose HFBT 
which improves the performance of storage, read and recovery 
by the data placement strategy based on load balancing, and the 
flexible encoding transformation method combined with the 
characteristics of archival data access decreases storage 
overhead. Moreover, the pipeline repair based on slice-level 
combined with data temperature is firstly proposed to speed up 
the reconstruction of archival data without increasing the storage 
cost and make up for the defect of RS code with high recovery 
delay. Although HFBT maximizes overall performance and 
reduces storage overhead, we don’t consider fault-tolerance of 
rack-level. The transmission consumption of across rack is 
conspicuous, so we will combine HFBT with fault-tolerance of 
rack-level, and further research how to optimize the overhead of 
across rack in the future. 
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