

HFBT: An Efficient Hierarchical Fault-tolerant

Method for Cloud Storage System

Ling Xiao1,3, Beiji Zou1,3, Chengzhang Zhu1,2,3,*, Meng Zeng1,3, Zhi Chen1,3

1School of Computer Science and Engineering, Central South University, Changsha, China
 2The College of Literature and Journalism, Central South University, Changsha, China

3Hunan Engineering Research Center of Machine Vision and Intelligent Medicine, Central South University, Changsha, China

{194701006@csu.edu.cn, bjzou@csu.edu.cn, anandawork@126.com, zengmeng@csu.edu.cn, chen.zhi@csu.edu.cn}

Abstract—With the development of information technology

and wide application of smart devices, data increases

exponentially and more and more data are stored in the cloud,

whereas most of them are infrequently accessed. Data

temperature indicates the access frequency of data, where hot data

is frequently accessed while cold data is rarely accessed after a

while, also called archival data appearing in many fields, such as

health care, finance, education etc. For these domains, appropriate

fault-tolerant method for data of different temperature can

improve the overall performance, so we propose the hierarchical

fault-tolerant method based on temperature (HFBT) that provides

the data placement strategy based on load balancing to improve

application performance (The efficiency of storage and read) and

recovery performance simultaneously and then executes encoding

transformation according to data temperature to reduce storage

overhead, and finally exploits the pipeline repair based on slice-

level for archival data to decrease recovery time. This paper has

three main contributions. (1) The reliability: HFBT realizes

closely to 100% of the reliability. (2) The performance: HFBT

saves 50% of storage overhead compared with 4-replicas and

improves overall performance compared with other methods.

Besides, the recovery speed of HFBT is up to 88.09% higher than

that of RS (9, 6) code. (3) The flexibility: users can flexibly set the

encoding transformation rules according to data characteristics.

Keywords—archival data, fault-tolerance, data placement,

encoding transformation, pipeline repair

I. INTRODUCTION

With the popularity of internet and the increasement of
intelligent devices, huge amounts of data are generated, and how
to efficiently store large-scale data has become a research
hotspot. Nowadays, in addition to store data on local devices,
cloud storage is an excellent solution that attracts extensive
attentions. The traditional storage system has limited capacity,
while cloud storage system can arbitrarily add nodes to expand
storage space, which provides better scalability. In addition, one
server of the cloud storage system can utilize resources of other
servers in the data center to realize resource sharing and save
costs, and users access data and resources in the cloud at any
time through the network. In summary, cloud storage system has
the advantages of scalability, economy and flexibility, but it is
built based on multiple servers and hard disks in servers

generally have low reliability, which is prone to failure [1]. For
example, over 50 machines appear unavailable every day in the
Facebook cluster with storage capacity of hundreds of petabytes
because of hard disks failure or power failure [2]. These failures
cause data not being correctly accessed, so cloud storage system
is necessary for establishing fantastic fault-tolerant mechanism
to make sure the reliability.

In general, replication and erasure code are the primary
strategies to guarantee reliability for cloud storage system [3],
and the former provides outstanding recovery performance, but
incurs high storage expenses. The recovery performance refers
that the data will be reconstructed by the fault-tolerant
mechanism once data is lost, and the reconstruction procedure
seriously affects read efficiency on users. The storage overhead
of erasure code dramatically decreases when maintaining the
same fault-tolerance, whereas it generates noteworthy
reconstruction costs, of which Reed-Solomon code (RS) is the
most popular, and the operations of encoding and decoding are
completed based on Galois field (GF) [4]. Afterwards,
researchers present massive optimized methods to remedy the
imperfections, mainly including three categories: the
optimization of RS code (OR), hybrid erasure code (HEC) and
the combination of replication and erasure code (REC). The OR
method focuses on how to reduce the recovery cost of single
erasure code, such as the Local Recovery codes (LRC) [5] for
reducing disk I/O and Regeneration codes (RGC) [6] for
reducing network bandwidth. The HEC mechanism uses
different structures or diverse kinds of erasure codes to balance
storage overhead and recovery performance [7], [8], [9]. The
REC method combines the complementary features of
replication and erasure code to achieve better performance [10],
[11], [12].

Nevertheless, these solutions still have some defects. The
OR method doesn’t consider the data access frequency and
exploits static encoding that either sacrifices storage overhead or
recovery performance. The HEC mechanism balances the
storage overhead and recovery performance to some extent, but
the processes of encoding and decoding have very high time
complexity, which seriously affects the read efficiency on users,
since erasure code with k data blocks and m redundancy blocks
needs to read k blocks to recover the data block when a data

27

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00019

block is lost. Similar to the HEC mechanism, the REC method
considers the storage cost and recovery performance, and
multiple replicas improve the access efficiency of hot data,
whereas cold data stored with erasure code still has high
recovery delay. Besides, for the HEC mechanism and the REC
method, the partition of data temperature greatly affects the
storage overhead, so how to identify the temperature of data and
utilize appropriate fault-tolerant method for data of different
temperature is very significant. Furthermore, current approaches
concentrate on how to reduce the recovery delay, but ignore that
the efficiency of storage and read is more intuitive and important
to users. Generally, the recovery performance is only measured
when data is lost and then reconstructed, and the main impact on
users is the efficiency of storage and read. Therefore, how to
improve both application performance (The efficiency of
storage and read) and the recovery performance to maximize
overall performance at the same time is a huge challenge, but the
existing approaches don't take this into account.

Inspired by this insight, in this paper, taking medical data as
research object, we propose a hierarchical fault-tolerant method
based on temperature (HFBT). Medical treatment and clinical
diagnosis generate lots of data which only are accessed when
patients are in hospital. When the patient is discharged from
hospital, the data related to the patient is rarely accessed again,
that is archival data. However, these archival data need to be
retained for a long time according to relevant medical rules, and
it is essential to build fault-tolerance for these data in order to
guarantee reliability. Different fault-tolerant methods have
diverse storage cost and reconstruction overhead. If all data are
used with the manner of the same fault-tolerant strategy, a large
amount of storage space or recovery time will be wasted. By
analyzing these characteristics of medical data and combining
the application performance with recovery performance, on the
basis of REC method, we present the data placement strategy
based on load balancing to improve the overall performance
(Storage, read and recovery) when placing data blocks. Then,
we propose the flexible encoding transformation strategy that
identifies the temperature of data to decrease storage overhead
of archival data, and meanwhile utilize the pipeline repair based
on slice-level which makes up for the drawback of erasure code
with high recovery delay to speed up reconstruction of archival
data. The key contributions are as follows.

(1) We analyze the access characteristics of medical data and
propose an effective hierarchical fault-tolerant method for
archival data that is rarely studied. Although taking medical data
as research object, it also can be referenced by other fields, such
as education, finance, etc.

(2) On the basis of the REC method, HFBT considers
application performance and recovery performance
simultaneously, which effectively improves the efficiency of
storage, read and recovery.

(3) The flexible encoding transformation reduces storage
overhead and the pipeline repair for archival data makes up for
the defect of erasure code with high recovery delay while taking
advantage of the benefits of replication and erasure code.

The remainder of this paper is organized as follows. In
Section II, the characteristics of medical data and related works
are introduced. In Section III, our methodology is described in

detail. Comprehensive experiments are carried out in Section IV
and this paper is concluded in Section V.

II. BACKGROUND AND RELATED WORKS

This section analyses characteristics of medical data, and
then introduces related works of storing archival data.

A. Characteristics of Medical Data

In 2017, Stanford Medicine Health Trends Report predicted
that the amount of medical health data will reach over 2,314 EB
by 2020 [13], for this reason that on the one hand, hospitals,
clinical experiments, pharmaceutical analyses and medical
smart wearables devices generate a mass of medical data, on the
other hand, and medical data need to be retained for a long time
to provide more complete and accurate services [14], [15].
Nevertheless, certain medical data is requisite for keeping online,
and most of them is timeliness, which is rarely accessed after a
while. For instance, medical expenses, inspection reports,
radiotherapy records, CT images, MRI images are almost no
longer accessed when patients are discharged from hospital,
which is called archival data in this paper.

The preservation of archival data is the very meaningful, so
different countries formulate diverse proposals for archival data,
whereas there has one thing in common that archival medical
data is conserved for a long time, as illustrated in the TABLE I.

TABLE I. SUMMARY OF ARCHIVAL DATA

Country Date Organization Relevant proposals

USA 2000

American Society

for Radiation

Oncology [16]

All radiotherapy-related

records need to be kept for

at least 5 years after death.

Australia 2005

The Royal

Australian and New

Zealand College of
Radiologists & The

Faculty of Oncology

[17]

Records and prescriptions

need to be preserved

throughout the lifetime,
preferably up to 5 years

after death, and images are

reserved for 7 years.

UK 2016
National Health
Service [18]

Medical data must be

conserved for 30-year or 8-

year after death.

China 2017

The Ministry of

Health of the

People's Republic of
China [19]

The records of outpatient

and inpatient need to be

preserved over 15 years, 30
year respectively.

Great importance is attached to the preservation of medical
data, where archival data is infrequently accessed, but takes up
a large proportion of storage space. Therefore, different fault-
tolerant mechanisms are requisite for online data and archival
data in order to decrease recovery time and storage space.
Meanwhile, it is important to periodically switch the fault-
tolerance of archival data to one that requires less storage
overhead.

B. Related Works

Researchers rarely focus on archival data to improve the
overall performance of storage system. Gupta et al. [20]
discovered that data need to be frequently moved to archival
warehouse by analyzing structural data, and proposed the
proactive archiving solution to accelerate query performance,
without considering storage overhead and recovery performance.
Chen et al. [21] presented parallel archiving method to reduce

28

archiving time in view of the high cost of converting three-
replicas into RS code, whereas it doesn’t take into account the
access frequency of data. Considering storage overhead,
recovery performance and access frequency, Xia et al. [7]
proposed HACFS that uses two different structures of erasure
codes to dynamically adapt workload changes. Wang et al. [8]
utilized LRC code and Hitchhiker code for data of different
temperatures. In the process of encoding conversion, some
original blocks are utilized to the maximum extent, which
reduces the number of transferring blocks and the reconstruction
time. Qiu et al. [9] employed RS code for writing-intensive tasks
and Minimum Storage Regenerating (MSR) code for reading-
intensive or frequently reconstructed tasks to balance the
overhead between storage and recovery, but the calculation of
MSR is very complicated. Literatures [7], [8], [9] employ
different structures or diverse categories of erasure codes, which
takes up lots of CPU, IO resources when encoding and decoding,
and the performance of hot data is very poor. Besides, if all data
are stored with erasure code, the recovery delay of data seriously
affects the read efficiency on users. Therefore, Ma et al. [10]
presented CAROM that combines replication and erasure code
where files are stored by erasure code in backup data center.
When a request initiates a write operation on the file, if the
requested file isn’t cached, the data is reconstructed by erasure
code and then the reconstructed data is cached to master data
center. When the file is cached, operations of read and write are
directly oriented to replicas. Mao et al. [11] put forward HyRD
that utilizes erasure code for large files and replication for small
files, metadata, large files frequently accessed, which achieves
rapid response and effective storage. Through discrete event
simulation, Gribaudo et al. proved [12] that the combination of
replication and erasure code can reduce the overhead and
improve the reliability to the greatest extent. However,
literatures [10], [11], [12] utilize erasure code for data accessed
infrequently or large files, so the recovery delay is very high.
Besides, the above methods don’t describe the partition of data
temperature in detail, and also don’t consider the application
performance of practical storage system.

Different from the above approaches, based on the REC
method, we consider the application performance and recovery
performance simultaneously, and propose the data placement
strategy based on load balancing to improve the efficiency of
storage, access, and recovery. Furthermore, the flexible
encoding transformation method decreases storage overhead,
and the pipeline repair based on slice-level speeds up
reconstruction of archival data, which makes up for the defect of
erasure code with high recovery delay while taking advantage of
the benefits of replication and erasure code. To our knowledge,
none of current approaches combine the pipeline repair and data
temperature to adapt different workloads, and most of them
sacrifice the storage overhead or recovery performance.

III. OUR METHODOLOGY

In this section, we briefly introduce our motivation, then
elaborate each module of HFBT, and finally describe the design
architecture.

A. Our Motivation

The performance of applications and the storage overhead of
system are affected by fault-tolerant ways, and it is necessary to

establish reliable mechanisms for data, so we propose an
effective fault-tolerant method HFBT to maximize the system
performance and reduce the storage overhead. The framework is
shown in the Fig. 1 that consists of three modules (Data
placement, Encoding transformation and Pipeline repair). We
mainly face the following challenges.

(1) Diverse nodes have diverse hardware configurations,
different performance and various workloads. How to take full
advantage of the resources of every node and evenly distribute
data to obtain the maximum application performance is a
significant problem.

(2) Data in different periods has different access frequency,
particularly for archival data which is almost no longer accessed
after a period of time, but it takes up a large proportion of space.
If all data always are stored by the same fault-tolerant method,
there is no doubt that lots of storage spaces or recovery time will
be wasted. Therefore, we need to design an encoding
transformation mechanism that periodically changes the fault-
tolerant way of archival data with the manner of a low storage
overhead.

(3) The HEC method and the REC method with erasure code
reduce storage overhead but lead to high recovery delay and
affect the read efficiency on users. Some methods focus to use
erasure code with higher storage overhead to obtain less
recovery delay since different erasure codes have different
storage costs, which fails to obtain the optimal storage overhead
and recovery performance. However, it is very important to
minimize storage costs while reducing the recovery delay as
much as possible.

Data placement

strategy

The pipeline

repair

The encoding

transformation

Replication

Encoding

transformation

High

frequency

access

Low

Frequency

access
RS code

Heavy workload

Slight workload

Blk1 Blk2 Blk3 Blk4 Blk5 Blk6 R

Fig. 1. The framework of HFBT.

B. Data Placement Strategy Based on Load Balancing

In this section, we will analyze the block placement
problems caused by replication and RS code, and then introduce
the data placement strategy based on load balancing.

1) Problem analysis
Cloud storage system generally uses replication and erasure

code for fault-tolerance, where each block needs to be stored in
different nodes. Especially for erasure code, once data is lost, the
data needs to be reconstructed, which consumes lots of CPU, IO,
memory, and results in poor application performance. For a
cluster containing 12 Datanodes, 3-replicas will randomly select
3 nodes, and RS (9, 6) code will optionally choose 9 nodes (This
paper mainly discusses inter-node fault-tolerance rather than
rack-level). As shown in Fig. 2, there are 12 nodes where nodes
ni, nj, and nk have numerous calculation tasks and other nodes
have slight workload. If 3-replicas or RS code selects nodes ni,

29

nj, and nk, performance of the system will be terrible. Next, we
will discuss the cost of choosing different nodes.

Assuming l data blocks {b1, b2, …, bl}, m nodes {n1, n2, …,
nm}, the block size bsize, Rj, Wj, Yj is the frequency of reading,
writing, and recovering of nj. FRj, FWj and FT is the speed of
reading and writing, the seeking time of nj. CRj, CWj, CYj is the
cost of reading, writing, recovering of nj.

The cost of writing a block bk (k{1, l}) and reading the bk
from node nj ({1, }j m) is:

size
jk

jk

b
CW FT

FW
= + (1)

 size
jk

jk

b
CR FT

FR
= + (2)

For RS code with d data blocks and r redundancy blocks, the
cost of recovering the bk is shown (3), where TR is the time of
transferring a block from a node to another node (Assuming all
nodes have the same bandwidth).

()size
jk

jk

b
CY d FT TR

FR
= + + (3)

The total cost of data access is:

j jk jk jk jk jk jkCA CR R CW W CY Y=  +  +  (4)

Assuming that nodes are accessed with the same frequency
and the seeking time. The cost comparison between node ni and
node nj is:

()() ()size size size size
j i

jk ik jk ik

b b b b
CA CA R Yd W

FR FR FW FW
− = + − + − (5)

When a node has a faster rate of reading and writing, the
total cost of reading, writing, and recovering for the node is
smaller.

2) Data placement strategy
The speed of reading and writing is mainly affected by the

resources of node, such as CPU, memory and IO. However, the
Hadoop [22] with random placement (RP) strategy doesn’t fully
consider the heterogeneity of nodes, which leads to the load
imbalance of the system. Therefore, we put forward the data
placement strategy based on load balancing. When placing
blocks, we consider the resource utilization of the system and
then select nodes with light workload. The workload of node is
measured by the following indicators.

Memory utilization is the ratio of the memory Mu used by
the process to the total memory Mt. The memory utilization M is
denoted by (6).

=

,

,

u t

u

u

t

t

M
M M

MM

M M


=







 (6)

CPU utilization is the ratio of the CPU execution time Cu of
the process to the total time Ct, which represents the running

situation of the process in a certain period, the lower the CPU
utilization, the less the running process. The calculation is
shown in (7).

=C

,

,

u t

u t

u

t

C
C C

CC

C


=







 (7)

I/O utilization is the ratio of the actual transfer rate Iu of the
disk to the maximum transfer rate It provided by the parameter
of the disk, as shown in (8).

=

,

,

u t

u

u

t

t

I
I I

II

I I


=







 (8)

On the premise of considering above indicators, if all data
are allocated to a node, the node network will be blocked and
the reading efficiency will be affected. In order to make data
evenly distributed among nodes, occupied storage space should
also be considered. Storage occupancy S is the ratio of the
storage space Su used by node to the total storage capacity St, the
calculation shown in (9).

=

,

,

u t

u

u

t

t

S
S S

SS

S S


=







 (9)

In order to improve the utilization of resources, blocks
should be placed on nodes with slight workload. The evaluation
function is constructed according to these indicators, and the
workload of node is evaluated by (10). The evaluation function
is based on the linear weighting method [23] that obtains the
corresponding weights in accordance with the importance of
each indicator. η

i
 represents the weight coefficient of each

indicator where the larger η
i
 indicates the more significant

impact on the node performance.

1 2 3 4

W M C I S   = + + + (10)

4

1

1
i

i


=

= (11)

Weight coefficients are determined through the influence of
indicators on the node performance. Due to node performance is
mainly influenced by the memory, CPU, I/O, and storage space,
and these factors belong to different categories. Hence, the
corresponding weights are determined according to the
hierarchy analytic method [24] that is a hierarchical weight
decision combining quantitative and qualitative analyses. The
evaluation objective is decomposed, and the complex problem
is divided into related factors in accordance with these
evaluation indicators. Then, quantitative decision is made on the
importance of each indicator through the combination of
objective analyses and subjective judgments. Therefore, the

30

value of η
i
 will be given in combination with experimental

analyses in Section IV.

Heavy workload

Slight workload

ni

nk

nj ni nj

nk

Fig. 2. The data placement strategy.

C. The Flexible Encoding Transformation of Replication and

Erasure Code

In this section, we analyze the performance of replication
and erasure code, and then describe in detail the encoding
transformation according to the access rules of medical data.

1) The performance analyses of replication and erasure

code

• The definition of erasure code
Replication and RS code are widely used for fault-tolerance

in distributed file system, such as Hadoop Distributed File
System (HDFS) [22] and Google File System (GFS) [25].
Generally, replication strategy copies n replicas on n different
nodes to tolerate n failures, while RS code performs more
complicated calculation based on Galois field to maintain the
same fault-tolerance. RS code is defined with (n, k) where n and
k are the number of total blocks and data blocks respectively,
(k > n-k). The (n, k) indicates that a file is divided into k data
blocks and n-k parity blocks. The process of encoding and
decoding of RS code is as follows.

The definition of encoding: Given k data blocks (b1, b2, …,
bk) and the positive integer m (m=n-k), RS code can generate m
parity blocks according to the k data blocks, as shown in (12)
where each parity block can be represented by linear
combinations of data blocks. Among GijFq, i(1, m), j(1, k),
Gij, Dj and Pi are the coefficient of generator matrix, the data
block, and the parity block, respectively, and Fq is the GF field
with q elements. In order to ensure the fault-tolerance between
nodes, the k + m blocks are stored in different nodes.

1 2 3 1 2 3(, , , ...,) (, , , ...,)T

i i i i ik kP G G G G D D D D= 　 　 (12)

The definition of decoding: Given discretionary k and m, the
original data can be generated according to k data blocks and m
parity blocks. That is, RS code can tolerate m data block failures
at most, as shown in (13), of which D is the missing data block,
and λi , Ri are the coefficient of the decoding matrix and
remainder blocks, λi Fq.

1

k

i i

i

D R
=

=  (13)

As shown in Fig. 3 and Fig. 4, there are six data blocks and
three parity blocks, and the parity block P is obtained by the
generator matrix G multiplying the data block D. If the data
blocks D2, D3, and D5 lose, decoding algorithm inverses the

encoding matrix, and then multiplies by remaining k blocks,
which restores the lost data blocks.

0 000 0

0 0 0 1 00 

D2

D3

D1

D4

D5

D6

=

D2

D3

D1

D4

D5

D6

P1

P2

P3

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 00

1

0 0 0 0 10

G11 G13 G14 G15 G16G12

G21 G23 G24 G25 G26G22

G31 G33 G34 G35 G36G32

G D P

Fig. 3. The encoding of RS (9, 6) code.



D4

D6

D1

P1

P2

P3

=

D2

D3

D1

D4

D5

D6

1 0 0 0 0 0

0 0 0 0 10

H
-1

DR

0 000 01

G11 G13 G14 G15 G16G12

G21 G23 G24 G25 G26G22

G31 G33 G34 G35 G36G32

-1

Fig. 4. The decoding of RS (9, 6) code.

• The comparison of storage overhead and recovery

performance
The multiple replicas of replication occupy a mass of storage

space. RS code economizes storage overhead, whereas the
encoding and decoding is very complex, which leads to high
recovery delay of data reconstruction. When the file size is S and
the block size is S/k (n nodes, k data blocks), the comparisons of
storage overhead and recovery performance of RS code and
replication are shown in TABLE II.

TABLE II. THE STORAGE OVERHEAD AND RECOVERY PERFORMANCE

Method Fault-tolerance Storage costs Bandwidth of

recovering a

block

RS code n-k nS/k S

Replication n-k (n-k+1)S S/k

It is difficult to balance storage overhead and recovery time.
Hot data is frequently accessed and needs low recovery delay,
while archival data occupies a large proportion storage space
and has lower requirements on read performance, so replication
and RS code applied for hot data and archival data can achieve
better performance. However, the number of replicas and the
parameters of RS code are also important to maximize reliability
and reduce storage overhead.

• The analysis of reliability
When the cloud storage system has n nodes, the reliability of

each node is r and the redundancy factor is d (d is the physical
space size divided by logical space size of data block). The
larger d indicates more storage overhead.

The system reliability Pre with replication is shown as (14),
where d is the number of replicas.

 1 (1)
d

re
P r= − − (14)

31

The system reliability Prs with RS (n, k) code is shown in
(15), where k and n are the number of data blocks and total
blocks, d=n/k.

0

. .(1)

kd k

i kd i i

rs kd

i

P C r r

−

−

=

= − (15)

Fig. 5. The comparison of reliability.

The comparison of system reliability is shown in Fig. 5,

where the x-axis is the redundancy factor d (r=0.9). When d 
1.5, the reliability of RS code is higher than that of the
replication and closely to 100%. Moreover, with the
increasement of the number of nodes, the reliability of RS code
is higher. The reliability of replication is closely to 100% until d

 3. Therefore, 3-replicas (d=3) for hot data and RS (9, 6) code
(d=1.5) for archival data can acquire closely 100% reliability
and mitigate hot issues of data.

2) The access rules of medical data
For medical system, the majority of data access cycle is

relatively short. When patients are discharge from the hospital
after recovery or outpatient treatment, the previous data are
scarcely accessed. Relevant statistical analyses reveal that data
access accords with the Pareto distribution, also called the 80/20
rule [26], [27], which describes plentiful real-world phenomena,
the probability density function as shown in (16), where x and
𝑥𝑚 respectively are a random variable, the smallest positive
number of x, 𝛼 > 0.

The analysis means that 20% data is accessed frequently, and
80% data is rarely accessed after a certain period. Besides, we
collected the medical data from the cooperative eye hospital and
the access characteristics also conform to this distribution. To
maximize the overall performance, rarely accessed data should
use the fault-tolerant approach with low storage overhead, and
frequently accessed data should use the fault-tolerant method
with superior recovery performance. Although data access
generally conforms to the Pareto distribution, the temperature of
data will change with the increase of data. The recovery
performance of different fault-tolerant methods is inversely
proportional to the storage cost, so the encoding transformation
of data is very important to balance the storage overhead and
recovery cost of the fault-tolerant system.

1

0,

()

,

m

m

m

x x

f x x
x x

x






+



=








 (16)

3) The encoding transformation

The encoding transformation need consider the temperature
variation and design the switching rule. Since archival data is
almost never converted to hot data, the temperature variation
only considers the cooling situation of hot data. When the
amount of hot data is more than whc of total capacity, the fault-
tolerant mechanism of cooling hot data is switched to RS code.
whc and 1-whc are the ratio of hot data and archival data (Hot data
and archived data are stored by replication and erasure code,
respectively). Literature [26] demonstrates that 30% data is
divided into hot data, which provides the best solution for cloud
storage system. Based on Pareto distribution and [26], the
subsequent experiments set the whc as 20% because the pipeline
repair based on slice-level is leveraged to speed up the
reconstruction of archival data, which makes up for the defect of
RS code with high recovery delay. In practical scenarios, users
can flexibly set whc according to data characteristics. Even if the
proportion of hot data exceeds 20% at some time, this situation
is temporary, moreover, and the failure of data will not happen
all the time, so data keeps this distribution within the average
range.

For the switching rule, common switching ideas are FIFO
(First in first out), LRU (Least recently used), and LFU (Least
frequently used) [28]. FIFO and LRU only consider the locality
of time and don’t combine with data access frequency, which is
unsuitable for practical storage system. LFU describes the
access frequency of data and switches data based on historical
access frequency, which is reasonable for practical application
scenarios because data recently accessed has greater probability
of being accessed in the future. Hence, we propose the encoding
transformation method based on time-slice LFU idea that
switches the fault-tolerant ways where the time is divided into
fine-grained slices to count more accurate access frequency, and
the access frequency is counted in each time slice. Besides, the
access frequency of file is not simply counted, but larger weight
is given to the most recently accessed file based on LFU idea.
The pseudocode of the encoding transformation is shown in
algorithm 1, and definitions of relevant parameters and the
calculation of access frequency of files are as follows.

• The total time T = ⋃ {Tj}
t
j=1 , t represents the number of time

slices.

• Data set D= ⋃ {Di}
z
i=1 , A= ⋃ ⋃ {Aij}

t
j=1

z
i=1 , z and Aij represent

the number of files, the total accesses number of file Di in
time slice j respectively.

• File size S= ⋃ {Si}
z
i=1 , Si represents the size of file Di.

• The accesses number of Di in time slice j:

1ij ij ij

I A A
−

= − (17)

• On account of the data recently accessed with greater
probability of being accessed, the access frequency of file is
not simply counted. The files recently accessed are given
larger weight, the access frequency f(Di) of file Di shown as
(18), where PT is the time slice.

(1)

1

() (.2)
T

T

P

P j

i ij

j

f D I
− − +

=

= (18)

Algorithm 1 The encoding transformation

0.5 1 1.5 2 2.5 3 3.5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

S
y

s
te

m
 r

e
li

a
b

il
it

y

Redundancy

 Replication

 RS code(k=4)

 RS code(k=6)

32

Input: sets T, D, A, S, whc

1: set w1, Stotal1 (Stotal1 is the total size of all files), ft1=0, iindex2

2: if in the j-th time slice the file Di is accessed then

3: the access frequency f(Di) is calculated according to (18)
4: end if

5: if in the j-th time slice the file Di is inserted and the size of

Di is Si then

6: sort files D by access frequency and obtain descending

sequence {f1, f2, …, fz}

7: f(Di)=f1.

8: set the fault-tolerance of Di by replication

9: end if

10: count new access frequency and obtain descending

sequence {f1’, f2’, …, fz+1’}
11: w1= whc  (Stotal1+ Si)

12: for i=1 → z+1 do

13: ft1= ft1+fi’

14: if ft1 > w1 then

15: set iindex2=i

16: end if

17: end for

18: the fault-tolerance of files between iindex1 and iindex2 is

converted to RS code (iindex1 is the separation index value

before the data is accessed or inserted)

Through the switching method, only the fault-tolerant mode
of cooling hot data needs to be changed according to the data
access characteristics, unlike other methods ([7], [8], [9]) to
perform the encoding transformation of all files, which greatly
reduces the time complexity and computation complexity. The
differences between HFBT and HyRD are that HyRD only uses
erasure code for large files and replication for small files and
metadata, and doesn’t consider the data block placement of
affecting application performance, the temperature of data and
the encoding transformation caused by temperature change. In
addition, HyRD utilizes replication for metadata to reduce
access delay. However, metadata is stored in memory, which
takes up more memory overhead, so this paper employs pipeline
repair based on slice-level to reduce recovery delay without
increasing storage overhead.

D. The Pipeline Repair Based on Slice-level

Traditional recovery method of HDFS transfers k blocks to
requestor R, which causes the congested downlink of R. The
pipeline method makes full use of the bandwidth of each node
and transmits data blocks in parallel. However, none of current
approaches combine the pipeline repair to adapt different
temperature of data, and most of them sacrifice the expense of
storage space or recovery time, so we propose the pipeline repair
based on slice-level (PRBS) to accelerate the recovery of
archival data without increasing storage overhead and make
better use of the advantages of the combination of replication
and erasure code to adapt to different temperature, which
reduces the reconstruction time to the same as the normal read.

PRBS divides each block into smaller slices to make better
utilize bandwidth resources. If there are k data blocks {b1, b2, …,
bk} and each block bi (1<i<k) is divided into s slices {bi1, bi2, …,
bis}, the transfer time of bi is 1 timeslot and the time of
transferring a slice bij (1<j<s) is 1/ s timeslots. There have s paths
that transmit s slices concurrently, whereas the bandwidth

resource of each path doesn’t conflict with each other. Each path
has k blocks and requestor R, so the transfer time of every path
is ks timeslots. For the first path N1→N2→…→Nk→R , N1
transmits β

1
b11 to N2, and N2 combines β1

b11+β
2
b21 to N3, and

then the process is repeated until Nk sends the first slice of all the
blocks to R, that is β

1
b11+β

2
b21+…+β

k
bk1→R, where β

i
 is the

coefficient of the decoding matrix. Therefore, the total time of
recovering a block is (s-1)/s+k/s=1+(k-1)/s. In general, k is fixed,
but s is elastic, and the total time is 1 timeslot when s is enough
large. As shown in Fig. 6, the total time of recovering a block is
7/4 timeslots, which is 9/4 timeslots less than traditional
recovery of HDFS.

N1 N2 N3 N4

Blk1 Blk2 Blk3 Blk4

R

R

Traditional recovery method

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

t0 t1 t2 t3

S1

S2

S3

S4

Fig. 6. The pipeline repair based on slice-level.

E. The Design Architecture

HFBT is designed for the application layer and storage layer,
as shown in Fig. 7, where the application layer identifies data
temperature, selects fault-tolerant methods and executes the
encoding transformation according to the data access frequency.
The storage layer singles out the appropriate Datanode based on
the data placement strategy, and then leverages PRBS to
accelerate recovery of archival data when data blocks are lost.

The data placement strategy calculates machine workloads
and selects nodes with slight workload before storing blocks.
PRBS mainly includes coordinator and helper where
coordinator is responsible for recovery, and helper runs on each
Datanode, which takes charge of dividing slices and transferring
blocks. If a block is lost, the storage layer creates Requestor that
transfers block id to Coordinator. Afterwards, Coordinator
requests Namenode to obtain k data block for the same stripe,
and then informs all helpers about the location of each block.
Eventually, helpers divide blocks into slices and transfer these
slices from Datanode to Requestor.

Datanode Datanode DatanodeNamenode

Coordinator Requestor

Temperature

identification
Application layer

Storage layer

Fault-tolerant

decision

Data

placement

Control flow Data flow

Encoding

transformation

Fig. 7. The design architecture.

IV. EXPERIMENTAL ANALYSES
The prototype is deployed on Hadoop3.1.1 and each node is

configured with Ubuntu16.04 system of Intel-Xeon-
CPU@3.0GHZ, 4G memory, gigabit network, and 200G disk.

33

HFBT is evaluated in four main aspects: (1) Replication using
the data placement based on load balancing tests different sizes
of blocks compared with RP of HDFS. (2) RS code using the
data placement of based on load balancing tests different sizes
of blocks compared with RP of HDFS. (3) The different size of
blocks and slices on pipeline repair in order to determine the best
parameters. (4) The performance of HFBT is compared with that
of 4-replicas, RS (9, 6) code, and the HyRD method while
maintaining the same fault-tolerance, where access logs are
obtained according to the PostMark benchmark [29] that creates
a pool of files to generate random sized files, including text files
and image files etc., with files ranging from 1 KB to 100M.

A. Replication Using the Data Placement Strategy Based on

Load Balancing

 The performance of node is affected by CPU, memory, and
IO, so we change one of three factors, keep the other two
unchanged, and test the influence of these factors on the
Datanode when the fault-tolerance is 3-replicas. As shown in Fig.
8, the cluster has 10 nodes with 1 Namenode and 9 Datanodes
(node1-node9), where (a), (b) and (c) set 3 nodes with 50% CPU
workload, 50% memory workload, and 50% IO workload
respectively. As can be seen from the figure, 3-replicas using the
data placement strategy based on load balancing achieves better
performance than RP of HDFS.

(a) CPU workload. (b) Memory workload.

(c) IO workload. (d) The replicas distribution of RP.

(e) Hybrid workloads.

Fig. 8. The comparison between replication based on load balancing and RP.

In general, users more concern read performance, and thus
we measure the weight of these indicators according to read
performance. When the size of data block is larger, the
performance of 3-replicas based on load balancing is
approximately 1:2:3 better than that of RP, as shown in (a), (b)
and (c). For example, when the size of data block is 128M, the
3-replicas based on load balancing reduces the read time than
RP by 17.18%, 36.65%, and 57.06% under 50% CPU workload,
50% memory workload, and 50% IO workload, respectively,
where the average results are the average time of 10 tests.
Consequently, the ratios of η

1
, η

2
, η

3
 are set to be 2:1:3

according to the hierarchy analytic method. Besides, since the
storage space has feeble influence, whereas data need to be
evenly distributed across each node, the ratio of η

4
 is set to be

equal 1. Eventually, the value of η
1
, η

2
, η

3
, η

4
 are 2/7, 1/7, 3/7,

1/7.

After determining the weights of indicators, we conduct the
experiment of hybrid workloads, as shown in (d), (e), node 1 and
node 2 with 50% CPU workload, node 3 and node 4 with 50%
IO workload, node 5 and node 6 with 50% memory workload,
node 7 with 50% CPU, 50% IO and 50% memory workloads,
node 8 and node 9 without workload. As shown in (d), 10 tests
are executed with 3-replicas of RP under different sizes blocks
and per block of different size produces 30 distributions. The x-
axis and y-axis stand for the Datanode and the distribution times
of RP replicas on nodes respectively, which indicates that the
block placement strategy of RP is random. Our method selects
node 1, node 8, node 9 or node 2, node 8, node 9 with slight
workloads. The (e) shows that the storage performance and read
performance of 3-replicas based on load balancing are superior
to RP under hybrid workloads.

B. RS Code Using the Data Placement Strategy Based on Load

Balancing

We experiment on RS (6, 3) code and RS (9, 6) code in 10-
node cluster with 1 Namenode and 9 Datanodes and 13-node
cluster with 1 Namenode and 12 Datanodes, where node 2, node
4, and node 6 occupy 50% CPU workload, 50% memory
workload, and 50% IO workload respectively. As shown in Fig.
9, the storage performance, read performance and recovery
performance of RS (6, 3) code and RS (9, 6) code based on load
balancing are better than those of RP. When the block size is
64M and 128M, the recovery time of RS (9, 6) code based on
load balancing decreases by 21.38%, 37.52%, 53.82% and
24.08%, 33.97%, 49.71% compared with RP in the case of one
block loss, two block losses and three block losses respectively
since workloads on nodes consume lots of resources and affect
the decoding process.

(a) The time of storage and read under hybrid workloads.

2238 2247
2349

2609

2970

3551

2313 2327
2473

2694

3586

4734

8 16 32 64 128 256

0

1000

2000

3000

4000

5000

A
v
e
ra

g
e
 r

e
a
d

 t
im

e
 (

m
s
)

Block size (M)

 3-replicas based on load balancing

 3-replicas based on RP

2272 2314 2396
2616

2961

3756

2406 2421 2485

3133

4674

8287

8 16 32 64 128 256

0

1000

2000

3000

4000

5000

6000

7000

8000

A
v
e
ra

g
e
 r

e
a
d

 t
im

e
 (

m
s
)

Block size (M)

 3-replicas based on load balancing

 3-replicas based on RP

2280 2341 2404
2589

2970

3607

2757

3874

4916

6061

6917

9311

8 16 32 64 128 256

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
v
e
ra

g
e
 r

e
a
d

 t
im

e
 (

m
s
)

Block size (M)

 3-replicas based on load balancing

 3-replicas based on RP

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

T
im

e
s

Datanode

 8M

 16M

 32M

 64M

 128M

8 16 32 64 128

0

2000

4000

6000

8000

10000

A
v
e
ra

g
e
 s

to
ra

g
e
 t

im
e
 (

m
s
)

Block size (M)

 3-replicas based on load balancing

 3-replicas based on RP

8 16 32 64 128

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

A
v
e
ra

g
e
 r

e
a
d

 t
im

e
 (

m
s
)

Block size (M)

 3-replicas based on load balancing

 3-replicas based on RP

8 16 32 64 128

0

10000

20000

30000

40000

50000

A
v
e
ra

g
e
 s

to
ra

g
e
 t

im
e
 (

m
s
)

Block sizes (M)

 RS(6,3) based on load balancing

 RS(6,3) based on RP

 RS(9,6) based on load balancing

 RS(9,6) based on RP

8 16 32 64 128

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
v
e
ra

g
e
 r

e
a
d

 t
im

e
 (

m
s
)

Block sizes (M)

 RS(6,3) based on load balancing

 RS(6,3) based on RP

 RS(9,6) based on load balancing

 RS(9,6) based on RP

34

(b) Recovery time under hybrid workloads.

Fig. 9. The comparison between RS code based on load balancing and RP.

C. The Pipeline Repair Based on Slice-level

The pipeline repair based on slice-level (PRBS) is utilized to
accelerate the reconstruction of archival data. We compare the
recovery performance of PRBS with different sizes of slices and
blocks, as shown in Fig. 10. As can be seen from the left figure,
when the block is fixed at 64M, the recovery time gradually
decreases with the increasement of slice size since the number
of slices is larger when the size of slice is smaller, which
increases the time of dividing slices. Furthermore, PRBS
achieves better performance than HDFS when one block, two
blocks and three blocks are lost. When the slice size is greater
than or equal to 256K, the slope gradually decreases and tends
to be flat. Therefore, the size of slice is selected as 256K in
subsequent experiments.

Fig. 10. Different sizes of slices and blocks.

When the size of slice is fixed at 256K, we compare the
recovery performance of different block sizes, as shown in the
right of Fig. 10. While one block, two blocks and three blocks
are lost, the recovery time of PRBS is smaller than that of HDFS,
and when the block size is 64M and 128M, the recovery time of
PRBS reduces by 36.6%, 43.31%, 49.09% and 45.94%, 52.74%,
58.24% compared with HDFS. Because our file is less than or
equal to 100M, the subsequent block size is set as 64M.

D. Performance Analyses of HFBT

HFBT employs different strategies for fault-tolerance and
carries out the encoding transformation based on data
temperature, which realizes the equilibrium of the storage
overhead and recovery time, and further utilizes the block
placement strategy based on load balancing to improve the
overall performance and accelerates the recovery of archival
data by leveraging PRBS. As shown in the left of Fig. 11, we
compare HFBT (4-replicas for hot data and RS (9, 6) code for
archival data), 4-replicas, RS (9, 6) code and HyRD (4-replicas
for small files and metadata, RS (9, 6) code for large files) when
maintaining the same fault-tolerance. When 1 node, 2 nodes and

3 nodes fail, the recovery speed of HFBT is 37.54%, 43.72%
and 50.03% higher than that of HyRD, furthermore, and the
recovery speed of HFBT is 69.92%, 73.57%, 88.09% higher
than that of RS (9, 6) code. Although the recovery speed of
HFBT is not as fast as that of 4-replicas, its storage overhead is
half of 4-replicas, which saves 50% storage space. We also
compare the recovery speed of HFBT based on load balancing
with HyRD based on RP, when 3 nodes of 12 Datanodes are set
to 50% CPU workload, 50% memory workload, and 50% IO
workload respectively, as shown in the right of Fig. 11. The
recovery speed of HFBT based on load balancing is 1.75X,
1.97X, and 1.98X of the HyRD based on RP when 1 node, 2
nodes and 3 nodes fail, which demonstrates that the hierarchical
fault-tolerant method combined with the data placement strategy
based on load balancing achieves better performance.

Fig. 11. Comparison of HFBT with other methods.

Fig. 12. The time of encoding transformation.

As temperature changes with time and data access, we
simulate data access. 200M, 300M, 400M, 500M and 600M data
will be inserted every 10 minutes and 20% of hot data will be
accessed. The encoding transformation time between HFBT and
other methods is shown in Figure 12 (There is no encoding
conversion for HyRD since the encoding of HyRD is based on
file size and data type) where HFBT only converts encoding of
part data and its transformation time is minimal. Therefore,
when the encoding transformation occurs, there has weeny
impact on users, but saves massive storage overhead.

V. CONCLUSION AND FUTURE WORK

The failure of large-scale cloud storage system is frequent,
whereas replication and erasure code incur great storage
overhead and recovery cost respectively. How to balance storage
overhead and recovery time to achieve maximum performance
is a research hotspot of cloud storage system and cloud service
center. Although there are lots of improved approaches, most of
them don’t simultaneously combine application performance
with recovery performance and sacrifice the storage cost when

8 16 32 64 128

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

A
v
e
ra

g
e
 r

e
p

a
ir

 t
im

e
 (

m
s
)

RS(6,3) - Block sizes (M)

 1 block failure of PR

 2 blocks failure of PR

 3 blocks failure of PR

 1 block failure of load balancing

 2 blocks failure of load balancing

 3 blocks failure of load balancing

8 16 32 64 128

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

A
v
e
ra

g
e
 r

e
p

a
ir

 t
im

e
 (

m
s
)

RS(9,6) - Block sizes (M)

 1 block failure of PR

 2 blocks failure of PR

 3 blocks failure of PR

 1 block failure of load balancing

 2 blocks failure of load balancing

 3 blocks failure of load balancing

8 16 32 64 128 256 512

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

A
v
e
ra

g
e
 r

e
p

a
ir

 t
im

e
 (

m
s
)

Slice sizes (K)

 1 block failure of HDFS

 2 blocks failure of HDFS

 3 blocks failure of HDFS

 1 block failure of PRBS

 2 blocks failure of PRBS

 3 blocks failure of PRBS

8 16 32 64 128

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

A
v
e
ra

g
e
 r

e
p

a
ir

 t
im

e
 (

m
s
)

Block sizes (M)

 1 block failure of HDFS

 2 blocks failure of HDFS

 3 blocks failure of HDFS

 1 block failure of PRBS

 2 blocks failure of PRBS

 3 blocks failure of PRBS

39.71

18.22

22.51

30.96

35.08

15.7

18.96

27.25

32.82

12.26

15.37

23.06

4-replicas RS(9,6) HyRD HFBT(no load balancing)

0

10

20

30

40

R
e

p
a
ir

 s
p

e
e
d

 (
M

/S
)

Method

 1 node failure

 2 nodes failure

 3 nodes failure

29.52

16.85

26.21

13.3

20.89

10.53

HFBT based on load balancing HyRD based on RP

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

R
e

p
a
ir

 s
p

e
e
d

 (
M

/S
)

Method

 1 node failure

 2 nodes failure

 3 nodes failure

10 20 30 40 50

5000

10000

15000

20000

25000

30000

35000

T
ra

n
s
fo

rm
a
ti

o
n

 t
im

e
 (

m
s
)

time (min)

 HFBT

 Literature [7]

 Literature [8]

35

reducing the recovery delay. In addition, the characteristics of
archival data aren’t considered. Therefore, we propose HFBT
which improves the performance of storage, read and recovery
by the data placement strategy based on load balancing, and the
flexible encoding transformation method combined with the
characteristics of archival data access decreases storage
overhead. Moreover, the pipeline repair based on slice-level
combined with data temperature is firstly proposed to speed up
the reconstruction of archival data without increasing the storage
cost and make up for the defect of RS code with high recovery
delay. Although HFBT maximizes overall performance and
reduces storage overhead, we don’t consider fault-tolerance of
rack-level. The transmission consumption of across rack is
conspicuous, so we will combine HFBT with fault-tolerance of
rack-level, and further research how to optimize the overhead of
across rack in the future.

ACKNOWLEDGMENT

This research is supported by the National Key R&D

Program of China (No.2018AAA0102100)，the Fundamental

Research Funds for the Central Universities of Central South
University (No.2020zzts143), the Scientific and Technological
Innovation Leading Plan of High-tech Industry of Hunan
Province (No.2020GK2021).

REFERENCES

[1] W. Dai, L. Qiu, A. Wu, and M. Qiu, "Cloud Infrastructure Resource
Allocation for Big Data Applications," IEEE Transactions on Big Data,
vol. 4, no. 3, pp. 313-324, 2018.

[2] K. V. Rashmi, Nihar. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K.
Ramchandran, “A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the Facebook
warehouse cluste,” USENIX Workshop on Hot Topics in Storage and File
Systems, 2013, pp. 1-8.

[3] C. Aatish and M. Avinash, “Data Management in Erasure-Coded
Distributed Storage Systems,” IEEE International Symposium on Cluster,
Cloud and Internet Computing, 2020, pp. 902-907.

[4] I. Tamo, M. Ye, and A. Barg, “The Recovery Problem for Reed–Solomon
Codes: Optimal Recovery of Single and Multiple Erasures With Almost
Optimal Node Size,” IEEE Transactions on Information Theory, vol. 65,
no. 5, pp. 2673-2695, 2019.

[5] L. Ma and C. Xing, “Constructive Asymptotic Bounds of Locally
Recoveryable Codes via Function Fields,” IEEE Transactions on
Information Theory, vol. 66, no. 9, pp. 5395-5403, 2020.

[6] Q. Q. Xu, W. Y. Xi, K. L. Yong, and C. Jin, “CRL: Efficient Concurrent
Regeneration Codes with Local Reconstruction in Geo-Distributed
Storage Systems,” Journal of Computer Science and Technology, vol. 33,
no. 6, pp. 1140-1151, 2018.

[7] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A Tale of Two Erasure
Codes in HDFS,” USENIX Conference on File and Storage Technologies,
2015, pp. 213-226.

[8] Z. Wang, H. Wang, A. Shao, and D. Wang, “An Adaptive Erasure-Coded
Storage Scheme with an Efficient Code-Switching Algorithm,”
International Conference on Parallel Processing, 2020, pp. 1-11.

[9] H. Qiu, C. Wu, J. Li, M. Guo, T. Liu, X. He, Y. Dong, and Y. Zhao, “EC-
Fusion: An Efficient Hybrid Erasure Coding Framework to Improve Both
Application and Recovery Performance in Cloud Storage Systems,” IEEE
International Parallel and Distributed Processing Symposium, 2020, pp.
191-201.

[10] Y. Ma, T. Nandagopal, K. P. N. Puttaswamy, and S. Banerjee, “An
ensemble of replication and erasure codes for cloud file systems,” IEEE
International Conference on Computer Communications, 2013, pp. 1276-
1284.

[11] B. Mao, S. Wu, and H. Jiang, “Improving storage availability in cloud-of-
clouds with hybrid redundant data distribution,” IEEE International
Parallel and Distributed Processing Symposium, 2015, pp. 633-642.

[12] M. Gribaudo, M. Iacono, and D. Manini, “Improving reliability and
performances in large scale distributed applications with erasure codes
and replication,” Future Generation Computer Systems, vol.56, pp. 773-
782, 2016.

[13] Stanford Medicine Health Trends Report, 2017, [Online]. Available:
https://med.stanford.edu/content/dam/sm/sm-
news/documents/StanfordMedicineHealthTrendsWhitePaper2017.pdf.

[14] E. Lockhart, K. Bak, L. J. Schreiner, D. C. Hodgson, E. Gutierrez,
P.Warde, and M. B. Sharpe, “Best Practice Recommendations for the
Retention of Radiotherapy Records,” Clinical Oncology, vol. 29, no. 11,
pp. 195-202, 2017.

[15] K. Gai, Z. Lu, M. Qiu, and L. Zhu, "Toward Smart Treatment
Management for Personalized Healthcare," IEEE Network, vol. 33, no. 6,
pp. 30-36, 2019.

[16] Proposals for storing medical data in USA, 2000, [Online]. Available:
https://www.acr.org/-/media/acr/files/practice-parameters/radonc.pdf.

[17] Proposals for storing medical data in Australia, 2005, [Online]. Available:
https://www.rcr.ac.uk/system/files/publication/field_publication_files/B
FCO(06)2_retention_of_records(2011).pdf.

[18] Proposals for storing medical data in UK, 2016, [Online]. Available:
http://webarchive.nationalarchives.gov.uk/20161101131024/http://syste
ms.digital.nhs.uk/infogov/iga/rmcop16718.pdf.

[19] Proposals for storing medical data in China, 2017, [Online]. Available:
http://www.nhc.gov.cn/fzs/s3576/201808/7a922e4803fa452f99d43a25ec
0a3d77.shtml.

[20] R. Gupta, H. Gupta, U. Nambiar, and M. Mohania, “Efficiently querying
archived data using hadoop,” ACM international conference on
Information and knowledge management, 2010, pp. 1301-1304.

[21] Y. Chen, Y. Zhou, S. Taneja, X. Qin, and J. Huang, “aHDFS: An Erasure-
Coded Data Archival System for Hadoop Clusters,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 11, pp. 3060-3073, 2017.

[22] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” IEEE Symposium on Mass Storage Systems
and Technologies, 2010, pp. 1-10.

[23] J. Watts and S. Taylor, “A practical approach to dynamic load balancing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 3, pp.
235-248, 1998.

[24] T. L. Saaty, “How to make a decision: the analytic hierarchy process,”
European journal of operational research, vol. 48, no. 1, pp. 9-26, 1990.

[25] S. Ghemawat, H. Gobioff, S. T. Leung, “The Google file system,” ACM
symposium on Operating systems principles, 2003, pp. 29-43.

[26] Y. Hsu, R. Irie, S. Murata, and M. Matsuoka, “A Novel Automated Cloud
Storage Tiering System through Hot-Cold Data Classification,” IEEE
International Conference on Cloud Computing, 2018, pp. 492-499.

[27] Y. Li, B. Shen, Y. Pan, Y. Xu, Z. Li, and J. C. S. Lui, “Workload-Aware
Elastic Striping With Hot Data Identification for SSD RAID Arrays,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 5, pp. 815-828, 2017.

[28] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat, “It's Time to
Revisit {LRU} vs.{FIFO},” USENIX Workshop on Hot Topics in
Storage and File Systems, 2020, pp. 1-7.

[29] PostMark, [Online]. Available: http://www.shub-
internet.org/brad/FreeBSD/postmark.html.

36

