
GR-ADMM: A Communication Efficient Algorithm 
Based on ADMM 

 

Xin Huang 
School of Computer Engineering and 

Science 
Shanghai University 

Shanghai, China 
Email: huangxin03@shu.edu.cn 

 

 Guozheng Wang 
School of Computer Engineering and 

Science 
Shanghai University  

Shanghai, China 
Email: gzh.wang@outlook.com 

 

Yongmei Lei 
School of Computer Engineering and 

Science 
Shanghai University  

Shanghai, China 
Email: lei@shu.edu.cn 

Abstract—In recent work, the decentralized algorithm has 
received more attention. In the centralized network, the worker 
nodes need to communicate with the central nodes, which results 
in the growth of communication traffic with the network expan-
sion. Based on the purpose of reducing the communication costs 
in the distributed system, we proposed a decentralized algo-
rithm based on ADMM - Grouping Ring All-Reduce ADMM 
(GR-ADMM) in this paper. First, GR-ADMM adopts decentral-
ized architecture to avoid the problem of communication bottle-
neck in the central network. Second, to ensure the scalability of 
the distributed system, GR-ADMM introduces the Ring All-Re-
duce to the ADMM. Ring All-Reduce architecture has the ad-
vantage of its constant communication overhead. However, its 
performance is bounded by the stragglers (i.e., slow nodes). 
Third, GR-ADMM adopts the grouping strategy to alleviate the 
problem of stragglers. Experiments show that our algorithm has 
better convergence performance than QSGD and GADMM, es-
pecially in massive clusters. Compared with GADMM's, the 
overall communication cost of GR-ADMM is reduced by 72%. 

Keywords—Communication-efficient decentralized algorithm, 
ADMM GR-ADMM, Ring All-Reduce, grouping strategy  

I. INTRODUCTION  
Distributed machine learning (DML) has attracted in-

creasing attention in various fields, such as image recogni-
tion, machine translation, and so on. With the rapid growth of 
mobile devices, centralized machine learning computing via 
cloud computing incurs considerable communication over-
head and privacy concerns [1]. Thus, the consensus is that 
future machine learning tasks will start from the network 
edge, namely devices [2]. Distributed optimization aims at 
solving the consensus problem ݔ∗ = ݔ݊݅݉݃ݎܽ ∑ ௜݂(ݔ)ே௜ୀଵ  , (1) 

which is defined over a bidirectionally connected network 
with N nodes. Each node ݅  has a local objective function ௜݂(ݔ): ܴே → ܴ. All the nodes share the common optimization 
variable ݔ ∈ ܴே and the nodes aim to find an optimal argu-
ment ݔ∗ ∈ ܴே cooperatively. In this process, the performance 
of distributed algorithms is usually characterized by the com-
putation cost and communication cost.  For an extensive scale 
network, the communication cost takes the dominant position 
compared to the computation cost [3]. Therefore, much work 
focuses on reducing communication overheads in the distrib-
uted system.  

The standard distribution strategy in machine learning is 
data parallelism [4]: each node maintains its copy of the model 
and nodes jointly optimize the same model on different parts 

of the training data with parameters exchanged over the net-
work. Network communication is involved in this process, 
usually using the Parameter Server [5] architecture or collec-
tive routines (e.g., Ring All-Reduce [6]). 

The Parameter Server (PS) architecture provides a logi-
cally separate device to store global parameters. Typically, 
data parallelism with PS contains several steps [7]: (1) each 
worker node computes its local parameters and sends them to 
PS; (2) PS sums the parameters sent by worker nodes; (3) each 
worker node gets parameters from PS. 

In the Ring All-reduce architecture, all the nodes are orga-
nized as a logistic ring. Each node in the cluster only com-
municates with its peers. Ring All-Reduce architecture does 
not need any central node to hold the global parameters. Thus, 
it is a decentralized network by nature. 

With the parameter server nodes, the PS architecture can 
easily manage all worker nodes, and it enables more flexible 
parameter synchronization. However, the central nodes need 
to hold models for all worker nodes and communicate with all 
worker nodes. As a result, the central nodes may become the 
bottleneck of the network expansion [8].  To solve the prob-
lem, Parameter Hub [9] introduces a high-performance multi-
tenant, rack-scale PS design, still, it requires special hardware 
to support its system, which does not exist in a typical distrib-
uted environment. 

Ring All-Reduce architecture has constant communication 
traffic for different sizes of clusters [10], and it has shown 
good performance on the distributed training, but it is a fully 
synchronous communication architecture. Thus, the stragglers 
may slow down the entire system. ADMMLIB [11] introduces 
asynchronous communication to Ring All-Reduce architec-
ture, but it needs a coordinate node to manage synchronization 
conditions. 

In our work, we focus on the problem of communication 
bottlenecks and stragglers in the distributed system. Based on 
the ADMM algorithm, we proposed the GR-ADMM, our con-
tributions are as follows: 

 We apply the ADMM algorithm in the decentralized 
network. The worker nodes are divided into several 
groups, and only the nodes in the same group can com-
municate with each other.  

 To ensure high communication efficiency, we realize 
the communication based on the Ring All-Reduce in 
the decentralized network. And with the grouping 
strategy, the effect of stragglers is decreased. 

220

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00041



 We evaluate the performance of the proposed GR-
ADMM algorithm with large data sets. Experiments 
show that GR-ADMM has better convergence speed 
and low communication costs. 

The rest of this paper is organized as follows. In Section Ⅱ, 
we introduce the related work, and in Section Ⅲ, we describe 
the GR-ADMM design. Section Ⅳ presents the performance 
of GR-ADMM, and the last section gives some concluding re-
marks. 

II. RELATED WORK 

A. Alternating Direction Method of Multipliers 
Alternating Direction Method of Multipliers (ADMM) [12] 

has been widely studied due to its outstanding convergence 
guarantees. The objective function of the original problem can 
be decomposed into several solvable sub-problems by the 
ADMM algorithm.  

Distributed ADMM was first proposed by Boyd and is im-
plemented in the centralized network, like AD-ADMM [13]. 
AD-ADMM uses the master node to store the latest parame-
ters sent by the worker nodes and compute the global param-
eters. To reduce the communication waiting time, AD-
ADMM was realized under the stale synchronous parallel 
(SSP [14] ) protocol.  

However, the master node in the central network will be 
the bottleneck of network expansion [2] due to the following 
two reasons. First, large-scale machine learning tends to learn 
large models, which puts tremendous pressure on the memory 
of the master node. Second, under the central architecture, the 
master node must communicate with all worker nodes, caus-
ing network congestion.  

The decentralized ADMM algorithm relaxes the algo-
rithm's consistency constraints. Problem (1) can be expressed 
as  ݉݅݊௫೔,௨೔ೕ ∑ ௜݂(ݔ௜)ே௜ୀଵ    

.ݏ  ௜ݔ   .ݐ = ,௜௝ݑ ௝ݔ = ,௜௝ݑ ∀(݅, ݆) ∈  ,ܧ

 

(2) 

Where ܧ represents the set of edges of the distributed network 
and ݑ௜௝  is an auxiliary variable, which maintains the con-
sistency constraint of node ݅ and node ݆.  

Decentralized ADMM does not need central nodes to ag-
gregate local variables of all nodes. Thus, the problem of 
communication bottleneck is avoided.  

B. Decentralized Optimization Algorithm 
Decentralized consensus optimization has attracted much 

more attention in recent years. For the decentralized network, 
each worker node only communicates with its neighboring 
nodes, which makes the failure of one node have little impact 
on the distributed system [15].  

D-ADMM [16] is an early attempt for ADMM applying in 
the decentralized network, which shows that decentralized al-
gorithm requires fewer communications to achieve a given ac-
curacy level.  [17] theoretically proved that the decentralized 
ADMM converges at a globally linear rate if the objective 
function is strongly convex.  

The distributed ADMM algorithm can accomplish conver-
gence through local data and parameters transmitted over the 
network. In order to relieve the communication pressure of the 

whole distributed system, much work commits to reduce the 
communication traffic of the system. GADMM [3] divides all 
worker nodes into two parts, and only half of the worker nodes 
are competing for communication resources at any time. 
GADMM reduces the communication costs by fixing the 
communication sequence, but it may suffer from the problem 
of the stragglers. SCCD-ADMM [15] concentrates on reduc-
ing the total cost of the system. Unlike the normal decentral-
ized algorithm, SCCD-ADMM selects part of the neighboring 
nodes to communicate by evaluating the communication cost 
and computation cost.  

For decentralized Stochastic Gradient Descent (SGD), two 
main algorithms were proposed so far, which are Decentral-
ized Parallel SGD (D-PSGD) [2] and Asynchronous Decen-
tralized Parallel SGD (AD-PSGD) [8]. D-PSGD relies on a 
fixed communication topology and it may encounter the prob-
lem of slow nodes. AD-PSGD introduces a random commu-
nication mechanism over the D-PSGD, but it may slow the 
convergence rate. 

Since there is no central node, the decentralized algorithm 
does not have the problem of communication hotspot. Thus, 
much work commits to reduce communication overhead to in-
crease the extensibility of the distributed system.  

III. PROPOSED ALGORITHM: GR-ADMM 
To solve the problem of communication hotspots, we ap-

ply the ADMM algorithm to the decentralized network. Un-
like the normal decentralized algorithms, we use Ring All-Re-
duce architecture to realize communication between nodes.  

In this section, we use the undirected graph ܩ = (ܸ,  (ܧ
denotes the set of nodes and edges, where ܸ ∈ {1, ⋯ , ݊} and ܧ ∈ ܸ ∗ ܸ . Each node in the graph can only communicate 
with its neighbors, ௜ܰ denotes the set of neighboring workers 
of node ݅, and | ௜ܰ | is the number of the neighboring nodes. 

A. Problem Formulation 
Point-to-Point communication is usually adopted in the 

decentralized network. However, the communication costs of 
normal Point-to-Point communication will increase a lot as the 
number of nodes in the cluster increase. 

Currently, Ring All-Reduce has a good performance on 
the distributed SGD [10], but the decentralized ADMM has 
not benefited from the all-reduce communication. With Ring 
All-Reduce architecture, the communication traffic will not 
increase significantly as the distributed network expands. 

[17] proposed that problem (2) can be solved with the fol-
lowing iterations: ݔ ݁ݐܽ݀݌ݑ௜௞ାଵ by solving:  ߘ ௜݂൫ݔ௜௞ାଵ൯ + ௜௞ߙ + |ߩ2 ௜ܰ|ݔ௜௞ାଵ           

|)ߩ−                       ௜ܰ|ݔ௜௞ + ∑ ௝௞௝∈ே೔ݔ ) = ௜௞ାଵߙ :௜௞ାଵߙ ݁ݐܽ݀݌ݑ 0 = ௜௞ߙ + |)ߩ ௜ܰ|ݔ௜௞ାଵ − ∑ ௝௞ାଵ௝∈ே೔ݔ ), 

(3) 

where  ߩ denotes the penalty term parameter, ݔ௜௞ ∈ ܴே is the 
local variables and ߙ௜௞ ∈ ܴே is the dual variables at iteration ݇.                                                                          

The algorithm of GR-ADMM: It is easy to find that the 
iterative formula (3) can apply to the normal Point-to-Point 

221



communication, but it is not suitable for all-reduce communi-
cation, since each node has different neighboring nodes sets ௜ܰ. We reformulate the iterative formula (3) as formula (4).  ݔ ݁ݐܽ݀݌ݑ௜௞ାଵ by solving ௜௞ାଵݔ  = ௫೔݊݅݉݃ݎܽ ௜݂(ݔ௜) + ௜்ݔ             ௜௞ߙ

௜்ݔߩ−                         ൣ(| ௜ܰ| − ௜௞ݔ(1 + ∑ ௝௞௝∈(ே೔ା௜)ݔ ൧                                 +ߩ| ௜ܰ|ݔ௜ଶ                ߙ ݁ݐܽ݀݌ݑ௜௞ାଵ: ߙ௜௞ାଵ = ௜௞ߙ + |)]ߩ ௜ܰ| + −                                             ௜௞ାଵݔ(1 ∑ ௝௞ାଵ௝∈(ே೔ା௜)ݔ ], 
(4)

Within the Ring All-Reduce architecture, the value of ݅ +௜ܰ is the same for each node ݅. Thus, this form of ADMM al-
gorithm can be easily implemented with all-reduce architec-
ture since each node ݅ exchanges the local parameters ݔ௜ to get 
the same parameters ∑ ௝௝∈(௜ାே೔)ݔ  . 

In order to utilize the high communication efficiency of 
the ring-based architecture, the paper proposes a new algo-
rithm based on ADMM.  In the next section, the paper will 
introduce the model design of GR-ADMM. 

B. The Model Design of Grouping Ring All-Reduce ADMM  
Normal decentralized algorithms choose to communicate 

with their neighboring nodes [2][16][17] or subsets of their 
neighbors [8][15], which may cause high communication traf-
fic (| ௜ܰ|ܤ, where ܤ is the bytes of the parameter) and intro-
duce few hot spots” [17] . Unlike normal point-to-point 
communication, the nodes in Ring All-Reduce are equal, thus 
there are no hot spots in the network. And the communication 
cost (ଶ|ே೔|஻|ே೔|ାଵ) is constant for different sizes of cluster. 

Thus, the paper chooses Ring All-Reduce for high com-
munication efficiency. However, Ring All-Reduce is recog-
nized as a fully synchronous communication model. In prac-
tice, the distributed system may suffer from the problem of 
stragglers. Thus, the paper comes up with an idea that com-
munication can be carried out in a smaller group. Based on the 
idea, the paper proposes a new communication model named 
Grouping Ring All-Reduce ADMM (GR-ADMM). 

 
Basic idea: The basic idea of GR-ADMM is to divide all 

nodes into several groups through an appropriate grouping 
strategy. For example, in Fig.1, we suppose that nine working 
nodes are divided into three groups, and nodes in the same 
group are colored in the same color. The nodes in the same 
group communicate using the Ring All-Reduce communica-
tion pattern. However, nodes in the same group can communi-
cate easily, but nodes in the different groups cannot exchange 
their parameters. As a result, the algorithm will not converge. 

To realize the communication between inter-group, GR-
ADMM adopts the grouping strategy. 

Grouping Strategy: Some work of centralized algorithms 
like [11] also adopts the method of grouping, and they realize 
the parameter exchange of nodes in different groups through 
inter-group communication. However, GR-ADMM cannot 
take this approach, since all nodes are equal in the decentral-
ized network and there is no central node to coordinate the 
communication between groups. Thus, GR-ADMM adopts 
the grouping strategy instead of inter-group communication. 

 
As is shown in Fig.2, the grouping strategy must be deter-

mined before communication starts. Unlike Fig.1, the group-
ing strategy in Fig.2 is different at different iteration. The pro-
cedure is shown in Algorithm 1. 

Algorithm 1: Grouping Ring All-Reduce ADMM  

For all nodes ݅ ∈ ܸ [in parallel] do 

Initialize:ݔ௜(଴) = 0, ,௜(଴)ߙ ݇ = 0,    ௜݌ݑ݋ݎܩ
End do 

While ݇ <  do ݊݋݅ݐܽݎ݁ݐ݅ݔܽ݉

    ݇ = ݇ + 1  

    For all nodes ݅ ∈ ܸ [in parallel] do 

        Get ݌ݑ݋ݎܩ௜(௞) at iteration ݇ 

        Get ∑ ௝௞௝∈(ே೔ା௜)ݔ  in the same ݌ݑ݋ݎܩ௜(௞) 
        Update ݔ௜௞ାଵ = ௫೔݊݅݉݃ݎܽ ௜݂(ݔ௜)                       +ݔ௜் ௜௞ߙ} − |)]ߩ ௜ܰ| − ௜௞ݔ(1 + ∑ ௝௞௝∈(ே೔ା௜)ݔ |ߩ+                        {[ ௜ܰ|ݔ௜ଶ 

        Get ∑ ௝௞ାଵ௝∈(ே೔ା௜)ݔ  in the same ݌ݑ݋ݎܩ௜(௞) 
        Update ߙ௜௞ାଵ = ௜௞ߙ + |)]ߩ ௜ܰ| + −                                   ௜௞ାଵݔ(1 ∑ ௝௞ାଵ௝∈(ே೔ା௜)ݔ ]  

End do 

End do 

C.  The Static Grouping Strategy and Dynamic Grouping 
Strategy 
Section B proposes that GR-ADMM choose a grouping 

strategy rather than inter-group communication. Notice that ݌ݑ݋ݎܩ௜   is determined by the user, so it could be changed for 
different algorithms or datasets to achieve a faster conver-
gence speed, but it should follow the requirement: the param-
eters of one node should be disseminated to other nodes in 
several iterations. 

 
Fig. 1.  An example of the grouping strategy of  GR-ADMM, the 

nodes with the same color means they are in the same group and the 
lines between nodes indicates the nodes can communicate with each 

other. 

 
Fig. 2. An example of the grouping strategy of  GR-ADMM at different 

iteration. To realize inter-group communication, GR-ADMM uses 
different grouping strategies at different iteration.  

222



In this section, the paper proposes two grouping strategies: 
static grouping strategy and dynamic grouping strategy. 

Static Grouping Strategy: Grouping will introduce few 
additional computation overheads. Thus, as Algorithm 1 
shows, it is wise to determine the grouping strategy before the 
algorithm starts. Communication is a time-consuming opera-
tor, so conflict should be avoided in the grouping strategy. 
Grouping with some fixed patterns is much more suitable in 
GR-ADMM. Next, the paper will introduce the static group-
ing strategy based on the above ideas. 

As Fig.3 shows, GR-ADMM modifies the group based on 
half of the nodes in the group (rules: the front half of the 
nodes, the back half of the nodes, the odd number of the nodes, 
the even number of the nodes). Fig.3 shows how Group 0 
changes the group. In practice, for each iteration, each group 
will choose the nodes according to the random rule and ex-
change with one other group randomly. And GR-ADMM can 
reuse serval iterations’ grouping strategy, Thus, the worker 
nodes need not store all grouping strategies. Fig.3 shows how 
to form the grouping strategies in Group 0 if the number of 
nodes is even. If the number of nodes is odd, GR-ADMM will 
use virtual nodes to supplement, the process of grouping is 
still as Fig.3 shows, and GR-ADMM will exclude virtual 
nodes when communicating begins. 

 
Dynamic Grouping Strategy: By introducing the static 

grouping strategy, the impact of slow nodes can be controlled 
in a set of working nodes. Although the problem of stragglers 
can be relieved by grouping, the slow nodes will still cause 
excessive waiting time. To further reduce the communication 
waiting time, the paper attempts to solve this problem by mod-
ifying the grouping strategy before each iteration starts. 

The purpose of optimizing the grouping strategy is to 
make the slow nodes' iteration catch up with the fast nodes' 
and make the slow nodes will not slow down the system. 
Therefore, in this process, slow nodes need to be defined. The 
time consumption of a single node includes computation time 
-which can be re ,(௖௢௠௠ݐ) and communication time (௖௢௠௣௨ݐ)
garded as the total time of an iteration (ݐ௜௧௘௥). By recording ݐ௜௧௘௥, we can determine the slow nodes, which have a larger 
value of ݐ௜௧௘௥.  

Inspired by parameter server, the paper introduces a coor-
dinator node to the system to record the value of  ݐ௜௧௘௥ and re-
adjust the grouping strategy. The procedure is shown in Algo-
rithm 2. 

 

Algorithm 2:  Grouping Ring All-Reduce ADMM with  

the Coordinator node 

Computation nodes: 

For all computation nodes ݅ ∈ ܸ [in parallel] do 

Initialize:ݔ௜(଴) = 0, ,௜(଴)ߙ ݇௜ = 0   

End do 

While ݇௜ <  do ݊݋݅ݐܽݎ݁ݐ݅ݔܽ݉

    ݇௜ = ݇௜ + 1  

    For all computation nodes ݅ ∈ ܸ [in parallel] do 

        Send ݇ to the Coordinator node 

Get ݌ݑ݋ݎܩ௜(௞೔) from Coordinator node 

        Get ∑ ௝௞೔௝∈(ே೔ା௜)ݔ  in the same ݌ݑ݋ݎܩ௜(௞೔) 
        Update ݔ௜௞೔ାଵ = ௫೔݊݅݉݃ݎܽ ௜݂(ݔ௜)                       +ݔ௜் ௜௞೔ߙ} − |)]ߩ ௜ܰ| − ௜௞೔ݔ(1 + ∑ ௝௞೔௝∈(ே೔ା௜)ݔ |ߩ+                        {[ ௜ܰ|ݔ௜ଶ 

        Get ∑ ௝௞೔ାଵ௝∈(ே೔ା௜)ݔ  in the same ݌ݑ݋ݎܩ௜(௞೔) 
        Update ߙ௜௞೔ାଵ = ௜௞೔ߙ + |)]ߩ ௜ܰ| + −                                      ௜௞೔ାଵݔ(1 ∑ ௝௞೔ାଵ௝∈(ே೔ା௜)ݔ ]  
End do 

Coordinator node: 

     Initialize:݇ = ௜_௜௧௘௥ݐ  ,݇ ௞ for each iteration݌ݑ݋ݎܩ ,0 = 0 for all computation nodes ݅ 
     While ݇ <  do ݊݋݅ݐܽݎ݁ݐ݅ݔܽ݉

Get ݇௜ from Computation node ݅  
Update ݐ௜_௜௧௘௥ for computation nodes ݅ 

                If   ݇௜ > ݇ do 

                     ݇ = ݇௜   
                     Modify the grouping strategy at iteration ݇        

according to ݐ௜_௜௧௘௥  

               End do 

               Send  ݌ݑ݋ݎܩ௜(௞) at iteration ݇ to  all nodes  

     End do 

As is shown in Fig.4, the coordinator node will keep the 
origin grouping strategy (static grouping strategy) and ݐ௜௧௘௥. 
The ݐ௜௧௘௥ is stored in the format of key-value, in which key is 
the number of worker nodes and value is the time difference 
between two iterations. For example, at iteration ݅ + 1 , (0, ܶ1 − ܶ0) will be stored for node 0. By recording ݐ௜௧௘௥, the 
coordinator node can find the stragglers and modify the group-
ing strategy. In practice, we can choose one worker node to be 
the coordinate node. Unlike the central node in the master-

 
Fig. 3. Static Grouping Strategy in Group 0. At each iteration, half of 

the nodes in each Group will select another group randomly to 
exchange.  And the figure shows how Group 0 determines the group 

strategy of Group 0. 

223



slave architecture, the coordinator node will not be the bottle-
neck of the system since the computation complexity 
 is fairly (where n is the number of worker nodes ,(݊݃݋݈݊)ܱ)
low and the data traffic (a few kilobytes) is small.  

By introducing a coordinator node, it may cause additional 
computation and communication overhead. It is necessary to 
optimize this process. Grouping conflict will bring extra com-
munication waiting time. To avoid this problem, the coordina-
tor node will modify the grouping strategy only when the first 
worker node of the new iteration asks for the grouping strategy, 
and then the grouping strategy at this iteration is determined. 
Thus, the coordinator can send the grouping strategy to other 
nodes without requests from other worker nodes. In this way, 
the small amount of computation and communication of the 
coordinator node is overlapped with the computation of 
worker nodes. 

 
Fig.4 shows how the coordinator node modifies the group-

ing strategy. Suppose node 1 in Fig.4 is the straggler in the 
distributed system. When the nodes request the set of the com-
munication nodes, the coordinator node will assign the fast 
nodes to the node if the node has a larger or smaller value of ݐ௜௧௘௥, since, in this way, the fast nodes will not be slowed down 

by slow nodes (see T1 at Fig.4, when the node 0 requests for 
communication, the coordinate node will modify the grouping 
strategy according to the ݐ௜௧௘௥ ௜  and the node1 will not slow 
down the system) and the slow nodes will have a chance to 
catch up with the fast nodes (see T3 at Fig.4, the coordinate 
node will modify the grouping strategy according to the ݐ௜௧௘௥ ௝ 
and node 1 will catch up to the iteration). 

GR-ADMM applies the ADMM algorithm in the decen-
tralized network to avoid the problem of hot spots.  And with 
Ring All-Reduce architecture, GR-ADMM can achieve high 
communication efficiency and constant communication traffic. 
To realize the communication between inter-group and avoid 
the problem of stragglers, grouping strategies are introduced 
in the GR-ADMM. In the next section, the paper will demon-
strate the advantages of GR-ADMM by experiments. 

IV. EXPERIMENT 
In this section, we evaluate the performance of the GR-

ADMM in logistic regression problems in the HPC cluster of 
Shanghai University. GR-ADMM is implemented in the C++ 
language and we use the MPICH library for distributed com-
munication.  

We compare GR-ADMM with two benchmark algorithms, 
(i) Grouping Alternating Direction Method of Multipliers 
(GADMM) [3] and (ii) Quantized SGD (QSGD) [21] in terms 
of the convergence and the communication cost of the system.  

In the experiment, we solve the logistic regression prob-
lem: ݂(ݓ) = ݉݅݊௪ ∑ ]݃݋݈ 1 + )݌ݔ݁ − ௜்ݔ௜ݕ [(ݓ +ே௜ୀଵ+ݓ||ߣ||ଶଶ  

where ݓ ∈ ܴ௡ is the model parameter, ݔ௜ ∈ ܴ௡ is the sample, ݕ௜ ∈ {−1,1} is the label of the sample and ߣ ≥ 0 is the scalar 
regularization parameter. We use the trust region Newton 
method [23] to solve the sub-problem in ADMM. 

 
Fig. 4. Modifying the grouping strategies in GR-ADMM, arrows with 

the same colors means they communicate in the same group 

 
Fig. 5. Relative Objective Error Curve of GR-DMM, GADMM and QSGD  

224



We consider the performance of GR-ADMM on the two 
datasets: rcv11 and kdd2010 raw version (bridge to algebra) 2. 
The rcv1 dataset has 677,399 samples and 47,236 features, 
and the kdd2010 dataset has 19,264,097 samples and 
1,163,024 features. Compared to rcv1, the kdd2010 dataset is 
much sparse and it converges slower.  

For GR-ADMM and GADMM, the penalty term parameter ߩ is set to 3e-3 for the rcv1 and 1 for the kdd2010. For QSGD, 
the paper adopts decreasing learning rate. In this section, we 
use ܰ denotes the number of nodes in the cluster and | ௜ܰ| de-
notes the number of neighboring nodes of the node i .  

A. Convergence Curve 
In this section, we test the convergence performance of 

GADMM, QSGD, and GR-ADMM. The experiments are set 
up with two datasets. For GR-ADMM, we set the worker 
nodes of each group to 4. The convergence performance of 
each algorithm is measured by (9) at iteration k. 

The relative objective error of node ݅: 
 | ௙೔(௪೔(ೖ))ି௙೔(௪∗)௙೔(௪∗) | 

We conduct experiments on 16, 32, and 64 nodes. Fig.5 
shows the convergence curve for the rcv1 dataset and the 
kdd2010 dataset. 

For both the rcv1 and the kdd2010 dataset, Fig.5 indicates 
that GADMM and GR-ADMM have a faster convergence 
speed than QSGD, which shows ADMM has the advantage of 
reaching a higher accuracy in few iterations. 

[17] theoretically analyze the factors that affect the con-
vergence of decentralized ADMM, including topology-related 
properties of the network, the condition number of the objec-
tive function, and the algorithm parameter  

GADMM divided all nodes into two groups and one 
worker node only communicates with up to two nodes. Ac-
cording to the factors affecting the convergence, we compare 
GADMM and GR-ADMM. In this section, these two algo-
rithms all solve the same problem, so the condition number of 
the objective function is the same. And we choose the same 

 
1 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary 
2 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2010%20raw%20version%20(bridge%20to%20algebra) 

penalty term parameter for them to fix the algorithm parame-
ter. Thus, topology-related properties will eventually affect 
the convergence performance. Topology-related properties of 
the network are related to the following factors. 

1) Condition Number of the Network:  [17] define the con-
nectivity ratio of the network (݌) as the actual number of edges 
divided by ே(ேିଵ)ଶ  . Thus, compare to GADMM ( ଶே ), GR-
ADMM ( ଶேିଵ) has larger ݌ ,which lead faster convergence. 

2) Network Diameter: Network Diameter (ܦ) is defined as 
the longest distance between any pair of agents in the network. 
D is related to how many iterations the information from one 
worker to all the other workers. The value of ܦ in GADMM 
is ܰ, while ܦ in GR-ADMM is ேே೔ . A larger ܦ causes a worse 
condition number of the network and thus slower convergence. 
With the grouping strategy in GR-ADMM, the information of 
one node can transmit to others with fewer iteration, resulting 
in faster convergence. 

3) Geometric Average Degree: Define the geometric aver-
age degree ݀௦ = ඥ݀௠௜௡݀௠௔௫   reflects the nodes’ number of 
neighbors in a geometric average sense, where ݀௠௜௡   and ݀௠௔௫   is the largest and smallest degrees of the agents in the 
network. Thus, the value of  ݀௦ in GADMM is √2  and GR-
ADMM’s is 2.  The larger ݀௦ in GR-ADMM implies better 
connectedness and thus a smaller condition number of the 
network as well as faster convergence. 

4) Imbalance of Bipartite Network: The value of imbal-
ance is defined by |݈஺| − |݈஻|, which can vary between 0 and  ܰ − 1 , and |݈஺| represents the number of agents in one group, |݈஻|  is the number of agents in another group. GADMM 
divides all nodes into two groups, and the number of nodes is 
the same in different groups. GR-ADMM is not a normal 
bipartite network, but the number of nodes is also the same in 
different groups. We can infer that the value of |݈஺| − |݈஻| is 
all zero for GADMM and GR-ADMM. Thus we ignore the 
factor of imbalance. 

As Fig.5 shows, compared to GADMM, GR-ADMM has 
better convergence performance on the rcv1 dataset. And for 
kdd2010, GADMM has a lower relative objective error at the 

 

Fig. 6. Performance comparisons among GR-ADMM, GADMM and QSGD  

225



beginning, while GR-ADMM will have a better performance 
after several iterations. In summary, GR-ADMM shows con-
vergence advantages both in theory and experiments. 

B. Total Cost of the System 
In Section Ⅲ.B, the system time is divided into computa-

tion time (ݐ௖௢௠௣௨) and communication time (ݐ௖௢௠௠). Commu-
nication time includes synchronization waiting time and data 
transmission time. In this section, we evaluate the perfor-
mance of the distributed systems according to the computation 
time and communication time. We compare these three sys-
tems by running them to 200 iterations. Fig.6 shows the per-
formance comparison on the rcv1 and kdd2010. From Fig.6, 
we can find that computation time reduces as the level of par-
allelism increases since the amount of calculation is evenly 
amortized by more nodes. 

For these three distributed systems, the communication 
traffic at each iteration is fixed, since the number of commu-
nication nodes of each iteration for each node is fixed. There-
fore, we can infer that, for different sizes of clusters, data 
transmission time will not change and the synchronous wait-
ing time is the main factor for the change of communication 
time. Fig.6 indicates that the communication time is decreas-
ing with the increase of parallelism. Because the decrease in 
computation time leads to a decrease in network waiting time. 
From Fig.5 and Fig.6, the experiments show that GR-ADMM 
has high accuracy and lower objective error after 200 itera-
tions, which reflects that GR-ADMM has outstanding global 
convergence. In Fig.6, we can find GR-ADMM has a lower 
time overhead, especially in communication time, which 
shows a greater performance of Ring All-Reduce than normal 
point-to-point communication.  

In Fig.6, QSGD takes less time when testing with 16 nodes, 
that is because SGD has low computation costs but it con-
verges slow. And with the network expands, the calculation 
load decreases, and SGD loses its advantages. For rcv1, GR-
ADMM can reduce communication time by about 72% com-
pared to GADMM and 27% compared to QSGD. For kdd2010, 
the communication time is reduced by 23% compared to 
GADMM. When compared to QSGD, GR-ADMM shows 
similar performance on time, but GR-ADMM has higher ac-
curacy. Our analysis is that the solving method of the sub-
problem takes too much time for high accuracy. And with the 
network expands, the computation costs decrease, the GR-
ADMM begins to show better performance.  

C. Performance of the Coordinate node 
To solve the problem of stragglers, GR-ADMM takes the 

strategy to modify the grouping strategy. In practice, it is not 
easy to control the appearance of the slow nodes. Inspired by 
[24],  we try to create the stragglers artificially to test the ef-
fectiveness of this method. We simulate the stragglers by ran-
domly selecting working nodes and prolonging their compu-
ting time.  

Compared to RCV1, the size and dimension of the dataset 
of kdd2010 are larger, and the algorithm will spend more time 
on computation. As is shown in Fig.7, it does not affect the 
computation time that modifying the grouping strategy, while 
it will have a significant influence on reducing the communi-
cation time, especially for complex computing tasks. We ana-
lyze the reason is that GR-ADMM avoids too long synchroni-
zation waiting time by modifying the grouping, which can be 
seen that communication time decreases a lot (nearly half) 
when testing with the kdd2010 dataset, and with the network 
expansion, the effect of modifying the grouping strategy de-
creases. 

D. Ring All-Reduce in GR-ADMM 
To analyze the advantage of Ring All-Reduce in GR-

ADMM, we also realize the normal Point-to-Point communi-
cation in GR-ADMM. With the increase of the number of 
nodes in one group, the complexity of the sub-problem will 
increase. To reduce the impact of computation time on com-
munication efficiency, we set the number of iterations of the 
sub-problem to 1. We run the system on 64 worker nodes to 
100 iterations, and TABLE I shows the performance compar-
isons of the two communication methods on kdd2010. 

In TABLE I, as the number of worker nodes in each group 
increasing, the communication time increases a lot when we 
choose Point-to-Point communication, while it only increases 
a little for Ring All-Reduce communication. We use ܦ to rep-
resent the dimension of the parameters and N to denote the 
number of worker nodes in one group of GR-ADMM. Thus, 
communication traffic in one group can be represented with 
݂݂ܿ݅ܽݎݐ ݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܿ .(11) == ൜ܦ × (| ௜ܰ| + 1) × | ௜ܰ|         ܲݐ݊݅݋ − ݋ݐ − ܦݐ݊݅݋ܲ × 2 × (| ௜ܰ| − 1)/| ௜ܰ|    ܴ݅݊݃ ݈݈ܣ − ݁ܿݑܴ݀݁  

 

Fig. 7. Performance of Dynamic Grouping Strategy  

226



It can be found that GR-ADMM with Ring All-Reduce 
communication pattern has constant communication cost and 
experiment results also show this advantage. 

TABLE I.  PERFORMANCE COMPARISONS BETWEEN POINT-TO-POINT 
AND RING ALL-REDUCE OF GR-ADMM ON KDD2010 

Communication 
Method 

Number 
of Work-

ers in 
each 

group 

Total 
Runtime 

(s) 

Communi-
cation Time  

(s) 

Computa-
tion Time 

(s) 

Ring All-Reduce 16 218.76 47.3 171.46 

Point-to-Point 16 223.05 52.7 170.35 

Ring All-Reduce 32 256.34 48.61 207.73 

Point-to-Point 32 317.95 110.01 207.94 

Ring All-Reduce 64 273.67 50.63 223.04 

Point-to-Point 64 806.8 598.53 208.27 

 

V. CONCLUSION 
Aiming at solving the problem of communication bottle-

necks and stragglers in the distributed system, the paper pro-
poses GR-ADMM, which is a decentralized algorithm based 
on the ADMM. With Ring All-Reduce architecture, GR-
ADMM shows high communication efficiency and great ex-
tensibility. And GR-ADMM chooses the grouping strategy 
rather than inter-group communication, which makes the in-
formation in one node can transmit to the other in fewer iter-
ations, resulting in faster convergence. Experiments show 
that our system has a faster convergence speed and less com-
munication time than QSGD and GADMM. However, for 
high accuracy, the computation tasks take too much time in 
GR-ADMM. In future work, we will focus on the work to get 
a balance on the low objective error and high communication 
effectiveness. GR-ADMM also shows potential value in mo-
bile communication. Another important work is to apply GR-
ADMM on wireless communication and some nonconvex 
problems. 

ACKNOWLEDGMENT  
The research is support by the National Natural 

Foundation of China under grant NO. U1811461. 

 

REFERENCES 
[1] J. Sun, T. Chen, G. B. Giannakis, and Z. Yang, “Communication-

efficient distributed learning via lazily aggregated quantized gradients,” 
arXiv, no. 2, pp. 1–20, 2019. 

[2] X. Lian, C. Zhang, H. Zhang, C. J. Hsieh, W. Zhang, and J. Liu, “Can 
decentralized algorithms outperform centralized algorithms? A case 
study for decentralized parallel stochastic gradient descent,” Adv. 
Neural Inf. Process. Syst., vol. 2017-Decem, no. 1, pp. 5331–5341, 
2017. 

[3] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “GADMM: 
Fast and communication efficient framework for distributed machine 
learning,” arXiv, vol. 21, pp. 1–39, 2019. 

[4] X. Jia et al., “Highly scalable deep learning training system with 
mixed-precision: Training imagenet in four minutes,” arXiv, 2018. 

[5] M. Li et al., “Scaling distributed machine learning with the parameter 
server,” Proc. 11th USENIX Symp. Oper. Syst. Des. Implementation, 
OSDI 2014, pp. 583–598, 2014. 

[6] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms 
for clusters of workstations,” J. Parallel Distrib. Comput., vol. 69, no. 
2, pp. 117–124, 2009, doi: 10.1016/j.jpdc.2008.09.002. 

[7] Y. Peng et al., “A generic communication scheduler for distributed 
DNN training acceleration,” SOSP 2019 - Proc. 27th ACM Symp. Oper. 
Syst. Princ., pp. 16–29, 2019, doi: 10.1145/3341301.3359642. 

[8] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized 
parallel stochastic gradient descent,” 35th Int. Conf. Mach. Learn. 
ICML 2018, vol. 7, pp. 4745–4767, 2018. 

[9] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy, 
“Parameter hub: A rack-scale parameter server for distributed deep 
neural network training,” SoCC 2018 - Proc. 2018 ACM Symp. Cloud 
Comput., pp. 41–54, 2018. 

[10] P. Sun, W. Feng, R. Han, S. Yan, and Y. Wen, “Optimizing Network 
Performance for Distributed DNN Training on GPU Clusters: 
ImageNet/AlexNet Training in 1.5 Minutes,” pp. 1–13, 2019, [Online]. 
Available: http://arxiv.org/abs/1902.06855. 

[11] J. Xie and Y. Lei, “ADMMLIB: A Library of Communication-Efficient 
AD-ADMM for Distributed Machine Learning,” in Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11783 
LNCS, pp. 322–326, doi: 10.1007/978-3-030-30709-7_27. 

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed 
optimization and statistical learning via the alternating direction 
method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 
1–122, 2010, doi: 10.1561/2200000016. 

[13] R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for 
consensus optimization,” 31st Int. Conf. Mach. Learn. ICML 2014, vol. 
5, no. 2, pp. 3689–3697, 2014. 

[14] Q. Ho et al., “More effective distributed ML via a stale synchronous 
parallel parameter server,” Adv. Neural Inf. Process. Syst., no. 1, pp. 
1–9, 2013. 

[15] Z. Tian, Z. Zhang, J. Yan, and J. Wang, “Distributed ADMM with 
Synergetic Communication and Computation,” 2020 Int. Conf. 
Comput. Netw. Commun. ICNC 2020, pp. 956–962, 2020, doi: 
10.1109/ICNC47757.2020.904965 

[16] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel, “D-
ADMM : A Communication-Efficient Distributed Algorithm For 
Separable Optimization,” vol. 2008, pp. 1–6, 2011. 

[17] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear 
convergence of the ADMM in decentralized consensus optimization,” 
IEEE Trans. Signal Process., vol. 62, no. 7, pp. 1750–1761, 2014, doi: 
10.1109/TSP.2014.2304432. 

[18] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication 
compression for decentralized training,” Adv. Neural Inf. Process. Syst., 
vol. 2018-Decem, no. NeurIPS 2018, pp. 7652–7662, 2018. 

[19] Y. Lin, Y. Wang, S. Han, W. J. Dally, and H. Mao, “DEEP Gradient 
compression: Reducing the communication bandwidth for distributed 
training,” arXiv, no. Nips, 2017. 

[20] Tang, Z., Shaohuai Shi and Xiaowen Chu. “Communication-Efficient 
Decentralized Learning with Sparsification and Adaptive Peer 
Selection.” ArXiv abs/2002.09692 (2020): n. pag. 

[21] D. Alistarh and J. Z. Li, “QSGD : Communication-Efficient SGD via 
Gradient Quantization and Encoding,” no. 1, pp. 1–12, 2017. 

[22] S. Zhu, M. Hong, and B. Chen, “Quantized consensus ADMM for 
multi-agent distributed optimization,” ICASSP, IEEE Int. Conf. Acoust. 
Speech Signal Process. - Proc., vol. 2016-May, pp. 4134–4138, 2016, 
doi: 10.1109/ICASSP.2016.7472455. 

[23] C. J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region Newton methods 
for large-scale logistic regression,” ACM Int. Conf. Proceeding Ser., 
vol. 227, no. May, pp. 561–568, 2007, doi: 10.1145/1273496.127356 

[24] Q. Luo, J. Lin, Y. Zhuo, and X. Qian, “Hop: Heterogeneity-aware 
Decentralized Training,” Int. Conf. Archit. Support Program. Lang. 
Oper. Syst. - ASPLOS, pp. 893–907, 2019, doi: 
10.1145/3297858.3304009

 

227


