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Abstract—Modern data center networks (DCNs) exhibit high
dynamics in both time and space dimensions, which poses
challenges for congestion control protocols to achieve low latency,
fast convergence, and high throughput. Existing methods have
leveraged fine-grained link load information to achieve precise
congestion control, but it still suffers from untimely control in
highly dynamic DCNs. In this paper, we propose a timely and
precise congestion control method called FastTune. FastTune em-
ploys fine-grained network status to achieve accurate feedback,
uses switch feedback to control the first RTT, and leverages ACK-
padding to shorten the feedback path and regulate congestion
in time. FastTune develops a multiplicative increase/decrease
(MI/MD) algorithm to achieve fast convergence based on timely
and precise feedback. Large-scale evaluations show that, com-
pared with state-of-the-art work, FastTune significantly reduces
the feedback delay by up to 87%, reduces the average flow
completion time by 40%, and the 99th percentile flow completion
time by 51%. Besides, FastTune maintains near-zero queueing
and reasonable throughput.

Index Terms—Data Center, Congestion Control, Feedback
Accuracy, Feedback Delay

I. INTRODUCTION

A large body of applications in modern data centers, such

as machine learning and high-performance storage, require

extremely low latency and high throughput [1]–[3]. With the

development of data centers, the scale and link rate of data

center networks (DCNs) are constantly increasing [4], leading

to complex and rapidly-changing network status. Recent data

center traffic research shows that traffic frequently fluctuates

in two dimensions of space and time [5]–[8], which places

higher demands on congestion control to promise optimal user

experiences [9].

Mainstream congestion control protocols use coarse-grained

feedback signals, e.g., explicit congestion notification (ECN)

[1], [10] or packet delay [11], [12], which are inefficient

for regulating congestion. As these signals cannot accurately

reflect the network status, the protocols are highly dependent

on the control algorithm to manage congestion. Moreover, by

using inaccurate information, these protocols require multiple

iterations to converge the flow transmission to the optimal

level, which is insufficient for highly dynamic traffic.

In recent years, the in-band network telemetry (INT) [13]

is drawing much attention and gradually supported by modern

switches. INT can obtain fine-grained network status, which

can be used for performing precise congestion control, such
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as the state-of-the-art method HPCC [14]. However, HPCC

still suffers from untimely control in highly dynamic DCNs.

In HPCC, fine-grained feedback requires at least one round-

trip time (RTT) to take effect, causing slow response to the

network congestion and free link capacity.

We have studied many works to observe that the per-

formance of congestion control is limited by the granular-

ity and timeliness of the network feedback. In the spatial

dimension, congestion control protocol requires fine-grained

network feedback that describes the complex network status

to make a more precise reaction. In the time dimension,

rapidly changing network status requires more timely control.

Therefore, congestion feedback needs to be both timely and

fine-grained.

HPCC already uses the INT technique to obtain fine-grained

network information to make precise response, but how to

achieve timely feedback is still challenging. In HPCC, Fine-

grained load information needs to go through the long feed-

back path of switch-receiver-switch-sender. The non-negligible

feedback delay will affect the effectiveness of feedback and

leads to two significant problems in highly dynamic DCNs.

First, The sender cannot react to the fine-grained feedback in

the first RTT of flow transmission, which causes uncontrollable

congestion and affects network performance in high-speed

network. Second, the feedback path is too long for the sender

to precisely regulate congestion in the non-first RTT of flow

transmission, causing slow response to the network congestion

and free bandwidth.

Based on the discussed problems, we propose a method

called FastTune, which can achieve timely and precise con-

gestion control for DCNs. In the spatial dimension, FastTune

uses fine-grained network information to accurately feed the

network status back, while in the time dimension, it also

realizes the timely delivery of fine-grained information. Since

the switch has a closer topological location to the sender than

the receiver, the switch can inform the sender of the link

status earlier. Fortunately, the latest commercial switches [15]

already have the function of actively sending back control

messages. FastTune uses active feedback from the switch to

control the first RTT of the flow. Besides, FastTune uses

ACK-Padding to shorten the feedback path for the non-first

RTT of the flow, making control more timely. FastTune uses

a multiplicative method to adjust the sending window to

efficiently react to timely and precise feedback. Thanks to

the above mechanisms, FastTune can quickly and accurately
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adjust the data transmitting rate to control congestion earlier

and occupy the idle link capacity faster.

In summary, the main contributions of this paper are as

follows:

• This paper proposes a timely and precise congestion

control method called FastTune, which uses fine-grained

feedback to achieve earlier congestion control.

• We propose a method of active feedback from the switch

for FastTune to make up for the lack of control in the

first RTT of flow transmission.

• We develop ACK-Padding for FastTune to reduce feed-

back delay in the non-first RTT of flow transmission.

• We propose a calculation method for feedback utility to

prove the efficiency of FastTune.

We conduct plenty of experiments to verify the superior

performance of FastTune from multiple aspects. Compared

with HPCC, FastTune can reduce the feedback delay by 87%,

the average FCT by 40%, and the 99th FCT by 51% in the

Cache Follower [7] traffic pattern of 0.8 link load. Besides,

FastTune can maintain near-zero queueing and reasonable

throughput.

II. STATE-OF-THE-ART AND MOTIVATION

The performance of congestion control is limited by the

granularity and timeliness of the feedback information. In the

spatial dimension, fine-grained feedback can provide precise

network description, which helps the sender make more pre-

cise adjustments to the flow. In the time dimension, timeliness

of feedback is also crucial to congestion control because the

network status in the data center changes rapidly and requires

more timely control. HPCC leverage fine-grained feedback to

perform accurate congestion control. However, how to achieve

timely feedback is still challenging.

A. Fine-grained feedback provides a more accurate network
description

Traditional protocols that use coarse-grained feedback sig-

nals cannot precisely control network congestion in highly

dynamic DCNs. DCTCP [10] and DCQCN [1] use ECN to

feedback network status. When congestion occurs, the switch

puts a one-bit ECN mark on the passing data packet, and then

the receiver sends an ACK or CNP packet to notify the sender

to reduce the sending rate. DX [12] and TIMELY [11] use the

delay as the congestion signal. They measure the delay of

the data packet, and then the sender adjusts the sending rate

based on the packet delay. These methods can handle network

congestion well, but they still suffer from slow convergence,

inevitable packet queuing, and complex parameter settings,

especially when the network status changes rapidly.

To deal with the problems above, HPCC uses the fine-

grained link load information from INT (including timestamp,

queue length, transmitted bytes, and the link bandwidth capac-

ity) to achieve precise congestion control. As shown in Figure

1, in HPCC, the switches pad the fine-grained load information

of the local link to each passing data packet. Then, the receiver

generates a corresponding ACK and copy the load information

Fig. 1. The overview of HPCC framework.

(a) Lack of feedback in the first
RTT.

(b) Feedback Delay and Reaction
Delay.

Fig. 2. The lack of timeliness of HPCC is manifested in two aspects: (a)
shows that HPCC cannot receive feedback within the first RTT; (b) shows
that HPCC feedback requires a long time to work.

to it after receiving the data packet. Next, the ACK is sent back

to the sender. Finally, the sender adjusts the sending window

according to the feedback information in the received ACK.

B. Timely feedback is necessary and challenging

Highly dynamic DCNs require timely control to avoid

congestion and improve link utilization. Due to untimely

network feedback, the current mainstream methods cannot

control the congestion in time. There are two main difficulties

to achieve timely feedback: First, the sender cannot react to

the fine-grained network information in the first RTT of flow

transmission. Second, the feedback path is too long for the

sender to precisely regulate congestion in the non-first RTT of

flow transmission.

1) Lack of feedback in the first RTT: HPCC cannot

receive network feedback in the first RTT, which leads to

uncontrollable congestion. As shown in Figure 2 (a), When

a new flow starts, its ACK requires at least one RTT to reach

the sender, which means that the flow is out of control in the

first RTT. As the link speed of DCNs has grown steadily from

1 Gbps to 10 Gbps and now 100 Gbps, the data flow will be

completed in a much shorter time, so the first RTT becomes

more critical in the flow life circle. To complete the data

transmission faster, HPCC uncontrollably sends data at the line

rate in the first RTT. As the link rate grows, the number of

flows that can be completed within the first RTT also increases.

We analyzed the proportion of these flows in three realistic

traffic patterns. As Table I shows, the amount of out-of-control

data in the first RTT increases significantly as the link rate

increases, which may cause network congestion and affect the

fairness between different flows. When the congestion occurs,

the flows in the first RTT will not reduce the sending rate

because they have not received feedback information, which

is unfair to other flows that have sent more than one RTT.

239



TABLE I
PROPORTION OF FLOWS THAT HAS BEEN SENT BY ONE RTT IN REALISTIC

TRAFFIC PATTERNS

Cache
Follower [7]

Web
Search [10]

Web
Server [7]

1 Gbps/10 μs 0.4 0.02 0.33
100 Gbps/10 μs 0.54 0.56 0.81

Given that, we develop a switch feedback mechanism to

notify the sender of network congestion in advance.

2) Long feedback delay in the non-first RTT: In high-

speed data centers, the network status changes rapidly, so the

timeliness of feedback information is vitally important. We

divide the time required for the feedback to take effect into

two parts: feedback delay and reaction delay. The feedback

delay is the time for the feedback information to be transmitted

in the path. The reaction delay is the time for the sender to

respond. Reaction delay is unavoidable, but the feedback delay

is related to the length of the feedback path. Therefore, the

key to achieving timely feedback is to shorten feedback delay

rather than reaction delay.

Figure 2 (b) shows the feedback delay of HPCC, which

makes it trivial to provide efficient congestion control in highly

dynamic DCNs. From t2 to t5, at least one RTT is required

for the feedback to take effect. A sender with a bandwidth of

B can send data of B ∗RTT at most within one RTT. In the

incast scenario, assuming n senders send data to one receiver

simultaneously, and the bottleneck port will accumulate (n−
1)∗B ∗RTT data within one RTT. As the link rate increases,

the uncontrolled packets in the first RTT will quickly lead

to link suspension or packet loss. Similarly, when the link is

under-utilized, HPCC also needs one RTT to re-seize the idle

link resources, causing the waste of bandwidth. Motivated by

the above problems, we develop ACK-padding to shorten the

feedback delay in non-first RTT flow transmission.

C. Summary

As one of the most advanced congestion control meth-

ods in modern data centers, HPCC uses fine-grained link

load information to achieve high-precision congestion control,

showing us the potential of fine-grained feedback information.

However, we find that HPCC cannot provide timely control in

highly dynamic DCNs. First, HPCC needs one RTT to feed

the network status back and has no control for the packets

sent within this period. Second, HPCC cannot receive timely

feedback due to the long feedback path in the non-first RTT

flow transmission. Therefore, we proposed a new protocol

called FastTune, which can achieve timely and accurate control

over the entire life cycle of the data flow.

III. DESIGN

In this section, we present an overview of FastTune, which

shows the design overview of FastTune. Then we introduce

the design details of FastTune, including the mechanism of

switches and hosts.

Fig. 3. The overview of FastTune framework.

A. Design overview

FastTune is a congestion control framework driven by

the sender. In the spatial dimension, FastTune employs the

fine-grained feedback from INT (including timestamp, queue

length, transmitted bytes, and the link bandwidth capacity) to

precisely adjust the sending window. In the time dimension,

FastTune leverages two key techniques to achieve timely

congestion control in the flow’s entire life, i.e., 1) switch

feedback to make up for the lack of control in the first RTT,

2) ACK-Padding shorten the feedback path and reduce the

feedback delay.

As Figure 3 shows, the data packet will be acknowledged

by the switch (S-ACK) and receiver (H-ACK), and the ACKs

and data packets are transmitted through a symmetrical path.

FastTune switch uses the fine-grained load information from

INT as the feedback. FastTune uses S-ACK to feedback

network status to achieve early control in the first RTT of flow

transmission. It pads the INT information in the ACK instead

of the data packet can reduce the feedback delay. In addition,

Senders multiplicatively adjust the sending window according

to the timely and fine-grained feedback for fast convergence.

B. Switch design

In this section, we describe the design details of switch,

including switch feedback and ACK-padding.

1) Switch feedback: FastTune uses switch feedback to
control the first RTT. As shown in Figure 4 (a), H-ACK

requires at least one RTT to reach the sender. Since the switch

is closer to the sender than the receiver, S-ACK can reach the

sender earlier. FastTune uses the S-ACK to transmit network

status back to the sender within the first RTT to achieve full

life cycle control of the flow.

FastTune switch conditionally generates the ACK (S-ACK)

for the flow (lines 3 to 5 of Algorithm 1). It records an

NewACK boolean value for each active flow, which indicates

whether to generate ACK for the flow. The initial value of

NewACK is set to true. If NewACK is true, the switch

will generate an ACK with INT information for the received

packet. When the switch receives the ACK (including H-ACK

and S-ACK) from the link, it sets NewACK to false, and no

longer generates ACK for this flow (lines 7 of Algorithm 1).
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Algorithm 1 Switch algorithm. H-ACK and S-ACK are the

acknowledgement packets generated by the host and switch

respectively. The initial value of NewACK is true. Info is

the information obtained by TNT function, it contains times-

tamp (ts), queue length (qLen), transmitted bytes (txBytes),

and the link bandwidth capacity (B) of port.

1: function HANDLEPCKFROMLINK(pck)

2: if pck is DataPck and NewACK is True then
3: new S-ACK;

4: S-ACK.Infos.insert(port.Info)
5: SendBack(S-ACK)

6: else if pck is H-ACK or pck is S-ACK then
7: NewACK = False
8: pck.Infos.insert(port.Info)

9: Forward(pck)

(a) Switch feedback and Host feed-
back.

(b) ACK-Padding and Data Packet-
Padding.

Fig. 4. Design Rationale. (a) illustrates that switch feedback can make up for
the lack of feedback in the first RTT; (b) illustrates that ACK-Padding can
significantly reduce the feedback delay compared to Packet-Padding.

In this way, each switch only needs to generate a few ACKs

to control the first RTT of the data flow.

2) ACK-padding: ACK-Padding can shorten the feed-
back path. FastTune uses symmetric routing to ensure that the

ACK packet must follow the reverse path of the corresponding

data packet. Since the paths of ACK and data packets are

symmetrical, they will pass through the same switchs, so ACK

can perceive the status of the data packet path. As Figure 4

(b) shows, data packet and ACK pass through the switch at t2
and t4. If the switch pads the feedback into the data packet,

the delay of the feedback information is Delaypck = t5− t2.

However, if the switch pads the feedback information in the

ACK, the feedback delay is only Delayack = t5−t4. Padding

the feedback in the ACK can significantly reduce the delay of

the feedback information. It allows the sender to perceive a

more real-time network status for more accurate control.

FastTune switch pads the INT information into the received

ACK (lines 6 to 8 of Algorithm 1). Since the path of the data

packet and the path of the ACK are symmetrical, the input

port of the ACK is the output port of the data packet. When

the switch receives the ACK (including H-ACK and S-ACK)

from the link, it pads the fine-grained status of the data packet

output port into the ACK through the INT function. Since S-

ACK is generated by the switch, it only passed a partial path,

in addition to the S-ACK generated by the last switch, the other

S-ACKs can only feed back the status of the partial path.

C. Host design
In this section, we describe the design details of the host,

including calculation of link utilization and adjustment of

sending window.

Algorithm 2 Host algorithm. η is the expected link utilization,

the initial values of W and W c are both set to a bandwidth-

delay product (BDP), the initial value of the SACKUpdate
is True.

1: function HANDLEACK(ack)

2: u = 0

3: for each link i on the ACK path do
4: txRate = ack.Infos[i].txBytes−Last[i].txBytes

ack.Infos[i].ts−Last[i].ts

5: qLen = min(ack.Infos[i].qLen, Last[i].qLen)
6: u′ = qLen+txRate∗T

ack.Infos[i].B∗T
7: if u′ > u then
8: u = u′; τ = ack.Infos[i].ts− Last[i].ts

9: τ = min(τ, T )
10: U = (1− τ

T ) ∗ U + u

11: W = W c

U/η +WAI

12: if ack is S-ACK and SACKUpdate is True then
13: W c = W
14: SACKUpdate = False
15: else
16: if ack.seq > lastUpdateSeq then
17: W c = W
18: lastUpdateSeq = snd nxt

19: Last = ack.Infos
20: R = W

T

Algorithm 2 illustrates the congestion control process of a

single flow at the sender. The sender controls the flow based on

the sending window W and stops sending when the window

runs out. The sending rate R of the flow is paced according to

the sending window. The sender calculates the link utilization

U according to the INT information padded in the received

ACK, U represents the most congested link in the path, and

the sender uses multiplicative increase/decrease (MI/MD) to

adjust the sending window.
1) Link utilization calculation:
The sender calculates the max link utilization U according

to the INT information padded in the received ACK. For a

link, its utilization is the ratio of the amount of data D that it

needs to transmit and the amount of data D0 it can transmit

within an RTT T . The amount of data that the path needs to

transmit within one RTT is equal to the sending rate multiplied

by the RTT plus the queue length of the port. The amount of

data that a path can transmit in an RTT is a BDP. Therefore,

the link utilization is calculated according to the following

equation.

u =
txRate ∗ T + qLen

B ∗ T (1)

As shown in lines 4 of the algorithm 2, the sender calculates

the port’s sending rate txRate according to the amount of

data txBytes and timestamp ts recorded in the current ACK

and the previous ACK, and then calculates the Utilization
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of each link according to Equation 1 (line 6). Because the

most congested link among all links represents the degree of

congestion of the entire path, the algorithm needs to find the

highest link utilization in the path (line 7-8). In order to avoid

the influence of the instantaneous queue, the algorithm uses the

smaller queue length of the last two acks to participate in the

calculation , and the algorithm uses the exponential weighted

moving average (EWMA) to filter the noise (line 10).

2) Adjustment of sending window:
The sender controls the flow based on the sending window

W and stops sending when the window runs out. So there is

the following relationship between the expected new sending

window and the current sending window.

Wnew

Wcur
=

η

U
(2)

FastTune sender uses Eqn(3) to quickly update the sending

window W . η is the expected link utilization.

W =
W

U/η
+WAI (3)

WAI is a small increase factor. It prevents the sending window

from dropping to zero and then unable to restart. WAI is

usually set to BDP ∗(1−η)/n, which ensures that concurrent

flows will not oversubscribe the link capacity, where BDP
and N is the bandwidth-delay product and maximum number

of concurrent flows in the link.

Since consecutive ACKs carry overlapping path informa-

tion, if the sender reacts to all ACKs, it will cause overreaction.

FastTune uses a strategy that combines per-RTT and per-ACK

to ensure that the flow converges quickly without overreaction.

The update of the sending window W is based on the reference

window W c (line 11 of Algorithm 2).

W =
W c

U/η
+WAI (4)

The sender updates the sending window every ACK, and the

reference window W c is updated every RTT. The variable

lastUpdateSeq records the sequence number of the first data

packet sent after the W c is updated, when the sender receives

the ACK corresponding to the lastUpdateSeq, then update the

W c to achieve per-RTT update (line 16 to 18 of Algorithm

2). Since only the switch ACK arrives in the first RTT, the

switch ACK can update the reference window only once, so

we use the variable SACKupdate to ensure this (line 12 to

14 of Algorithm 2).

IV. ANALYSIS AND DISCUSSION

This section proposes a calculation method of feedback

utility. Then we discussed the hardware support required by

FastTune.

A. Utility of feedback

The utility of feedback determines the ability of congestion

control, and it is mainly related to the timeliness and the

richness of the feedback. For the ACK that carries network

status, its utility is determined by the number of switches it
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Fig. 5. Comparison of the feedback utility between HPCC and FastTune

passes through and the delay of each switch’s feedback. We

define the utility of the i-th switch’s feedback as follows:

ui =
2RTT − delayi

T
(5)

This is a heuristic definition, delayi is the switch’s feedback

delay. It is inversely proportional to utility. Without consider-

ing packet queuing, the delayi will not exceed one RTT. In

order to ensure that the utility of one switch’s feedback does

not exceed the sum of the two switches, we set the constant

in Eqn(5) as 2RTT . So the utility of ACK is as follows, n is

the number of switches passed by the ACK.

U =
1

n
∗

n∑

i=1

ui = 2− 1

n ∗ T ∗
n∑

i=1

delayi (6)

There are N switches in the path, and the feedback delays of

the i-th switch in HPCC and FastTune are as follows:

delayihpcc = (1− i

2(N + 1)
) ∗RTT (7)

delayiFastTune =
i

2(N + 1)
∗RTT (8)

Uhpcc = 2− 1

N ∗ T ∗
N∑

i=1

delayihpcc = 1.25 (9)

UFastTune = 2− 1

n ∗ T ∗
n∑

i=1

delayihpcc = 2− n+ 1

4(N + 1)
(10)

For HPCC, each ACK can represent the congestion level of the

entire path, so the utility of ACK feedback in HPCC is shown

in Eqn (9). For FastTune, the S-ACK may only represent the

congestion level a partial path. Therefore, the utility of its ACK

is shown in Eqn (10), where n is the number of switches in

the partial path. The S-ACK generated by the switch that is

farther from the sender can indicate the information of the

longer path, but it also takes more time to reach the sender.

So n is gradually increasing in the first RTT. As shown in

Figure 3, in the first RTT, FastTune can feed partial network

status back to make up for the lack of control. After the first

RTT, FastTune can also generate more effective feedback to

guide the sender to perform precise control.
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Fig. 7. Average throughput of flow2
- flow4 when congestion occurs in a
bottleneck link.

B. Hardware support

The latest switch can already support switch feedback [15].

Commercial switch hardware only needs a few modifications

to support FastTune. The INT function can obtain switch

information on the data plane. Since the paths of the data

packet and the ACK are symmetrical, the output port of the

data packet is the input port of the ACK, and the two are

buffered in different queues in the switch, which means that

the switch needs to collect cross-port information.

Most commercial switches adopt a shared buffer port queue

design. The switch hashes the five-tuple of the flow (source IP,
destination IP, source port, destination port, protocol type) and

then allocates the buffer according to the hash value. When

receiving an ACK, the switch only needs to exchange the

(source IP, source port) and (destination IP, destination port)
first, and then hash the exchanged five-tuple to find the queue

of the data packet and collect information.

V. EVALUATION

In this section, we will conduct lots of experiments to

evaluate the performance of FastTune based on the OMNeT++

simulator [16] with our extended INET framework [17].

A. Evaluation configuration

Schemes. We make a comprehensive comparison between

FastTune and HPCC. FastTune only uses MI/MD to adjust

the sending window. HPCC uses a combination of MI/MD and

additive increase (AI). AI conservatively increases the sending

rate, while MI is more aggressive than AI. For the sake of

fairness, we have also implemented a version of HPCC without

AI for comparison. We call it HPCC+.

Network topologies. Most of the evaluations in this paper

use the Clos topology. In this topology, four spine switches

are connected to 24 leaf switches, and each leaf switch is

connected to 10 hosts. The link rate between the host and

the leaf switch is 10 Gbps, and the link rate between the leaf

switch and the spine switch is 100 Gbps. The delay of two

adjacent nodes is 2 μs. Besides, we used a simple many-to-one

topology to verify the convergence of FastTune.

Traffic patterns. We have used the widely accepted and

publicly available data center traffic patterns, Cache Follower

[7], Web Search [10] and Web Server [7] in our evaluation.

We adjusted the traffic generation rate to set the average link

load to 40%, 60%, and 80%, respectively. We also created

some simple manual traffic patterns to evaluate FastTune’s

microbenchmarks.

Parameters. HPCC uses the parameters recommended by

the paper [14]: maxStage = 5, η = 0.95, WAI = BDP ∗ (1−
η)/N , where N is the maximum number of concurrent flows

in the link. HPCC+ and FastTune have the same parameters

as HPCC except maxStage, they do not need this parameter.

Performance metrics. There are four metrics for our eval-

uation: (1) Feedback delay; (2) Flow completion time (FCT);

(3) Throughput of hosts; (4) Switch port queue length.

B. Micro-benchmarks

In this subsection, we evaluate and compare FastTune’s

convergence and feedback delay.

Feedback delay: We ran three realistic traffic patterns in

the 240-node Clos topology, and the link load was 0.8. We

counted the feedback delay of all transmissions across racks.

Each cross-rack path contains three switches. We measure the

feedback delay of the three switches in each ACK and then

average them to get the ACK’s feedback delay.

In the Clos topology, the base RTT is 8 μs. In Figure 6,

we can see that the feedback delay of HPCC is several times

the basic RTT and varies with the traffic patterns. However,

the feedback delay of FastTune is only half of the basic RTT

and does not change with traffic patterns. The reason is that

FastTune pads the feedback information in the ACK instead of

in the data packet and allows the ACK to be transmitted before

the data packet. Thanks to timely feedback, the sender can

obtain more real-time network status and make more precise

feedback.

Fast convergence: We compared the convergence speed of

HPCC and FastTune when the link is congested. In the many-

to-one topology, flow1 sends data to the receiver first, and

then flow2 to flow4 sends data to the receiver simultaneously.

Figure 7 shows the average throughput change of flow2-flow4

during congestion. In the beginning, all flows are sent at the

line rate, which leads to congestion at the bottleneck link.

FastTune started to reduce the sending rate at 6 μs, and the rate

is reduced to the lowest point at 14 μs. However, HPCC started

to reduce the rate to 13 μs. At 56 μs, FastTune has almost

restored a fair sending rate. HPCC is reducing the sending rate

to a minimum at 50 μs and reaches the fair rate after 200 μs.

FastTune can detect and control congestion earlier because the

switch can feedback in the early stage of flow transmission.

The timeliness of the feedback also allows FastTune to use

a multiplicative increase to restore the rate without causing

the link to oversubscribe. These make FastTune have better

convergence than HPCC.

C. Large-scale simulations

In this subsection, we run three realistic traffic patterns in

a 240-node large-scale Clos topology to evaluate the perfor-

mance of FastTune. The delay between adjacent nodes is 2

μs, so the RTT across the rack in the topology is 8 μs, and
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(a) Cache Follower (b) Web Search (c) Web Server

Fig. 8. Three methods of AVG FCT and 99-th FCT in different realistic traffic patterns and workloads.

(a) Cache Follower (b) Web Search (c) Web Server

Fig. 9. Average queue distribution of all downstream ports of leaf switches in Clos topology with different real traffic patterns and workload.

(a) Cache Follower (b) Web Search (c) Web Server

Fig. 10. Average throughput of all host ports in Clos topology with different real traffic patterns and workload.

the RTT within the rack is 4 μs. To pressure test various flow

patterns, each pattern has a workload of 0.4, 0.6, 0.8. In the

experiment, we compare FastTune with HPCC and HPCC+.

FastTune can significantly reduce the FCT. Figure 8

shows the 99th percentile FCT and average FCT of FastTune

and the other two methods under different realistic traffic

patterns. In all scenarios, the FCT of FastTune is better than

that of HPCC. When the link workload is low, the FCT

performance of the three methods is similar. With the increase

of workload, the performance difference of FCT becomes

more obvious. For example, in the Cache Follower traffic

pattern with a workload of 0.8, the AVG-FCT and 99th-FCT

of HPCC are 3.13 ms and 33.34 ms, but FastTune has only

1.89 ms and 16.3 ms. FastTune reduces the AVG-FCT by 40%

and the 99th-FCT by 51%.

HPCC+ is also better than HPCC. Because HPCC+ only

performs multiplicative increase when adjusting the sending

window. FastTune’s FCT is better than HPCC+ in most

scenarios. The reason is HPCC+ does not have timely network

feedback, so its response lags behind the network status, which

causes HPCC+ to easily lead to oversubscription of links.

As Figure 8 (c) shows, in the Web Server traffic pattern,

FastTune’s FCT is slightly worse than HPCC+ of load 0.4.

The reason is that most of the Web Server traffic patterns

are short flows, and HPCC and HPCC+ cannot control them

well. Due to low workload, these uncontrolled flows are sent

out quickly and rarely cause congestion. When the link load

increases, these uncontrolled flows will cause congestion. So

when the load is 0.6 and 0.8, FastTune is significantly better

than HPCC+.

FastTune can achieve near-zero queuing. In FastTune, the

sender can obtain more timely and effective network feedback.

When the network is congested, the sender can detect the con-

gestion earlier and deal with it to avoid worsening congestion.

However, HPCC needs more time to react when congestion

occurs, which leads to the accumulation of congested queues.

Figure 9 shows the distribution of the average queues of all the

downstream ports of the leaf switch in the Clos topology. We

can see that FastTune can maintain a lower or similar queue

length in different traffic patterns and workload scenarios than
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HPCC. However, HPCC+ maintains a very high queue level in

all scenarios. The reason is that HPCC+ uses a multiplicative

method to increase the sending window. Therefore, due to

untimely feedback, it is easy to cause link congestion.
FastTune can maintain a more reasonable throughput.

It is unreasonable to blindly increase throughput, which will

only lead to link congestion. The Web Server traffic pattern is

mostly short flow, and HPCC and HPCC+ are insufficient to

control it. As Figure 10 (c) and Figure 8 (c) shows, although

the throughput is high, it is easy to cause congestion and

hurt the FCT. The Web Search flow pattern has many long

flows. Figure 10 (b) shows that FastTune can better avoid

congestion and occupy the idle link capacity faster, so it has

higher throughput than others. In the Cache follower traffic

pattern, the long and short flows are relatively uniform. As

Figure 10 (a) Shows, when the link load is low, the throughput

of FastTune is slightly lower than the other two schemes.

When the link load increases, FastTune can provide higher

throughput.

VI. RELATED WORKS

In recent years, to achieve both low latency and high

throughput, various transmission protocols have been proposed

for DCNs.
DCTCP [10] uses instantaneous ECN marking to detect

the network congestion, and the sender adjusts the sending

window according to the ECN mark. Many works have been

proposed based on DCTCP. D2TCP [18] adjusts the sending

window for the deadline. DCQCN [1] uses both ECN and con-

gestion quantification feedback to control congestion. HPCC

[14] relies on INT to achieve precise control of congestion,

but it still suffers from untimely control.
DX [12], TIMELY [11] and Swift [3] are delay-based

congestion control schemes. DX judges and controls network

congestion based on queuing, Timely adjust the sending rate

according to the gradient of RTT. Swift uses a simple target

end-to-end delay instead of RTT gradient. However, delay-

based solutions are easily affected, and all require high RTT

measurement accuracy.
pHost [19], NDP [20], Homa [21] and ExpressPass [22]

are proactive congestion control schemes, which use credits

to allocate the link bandwidth for flows and actively prevent

network congestion. However, they usually require unpractical

changes to the hardware.

VII. CONCLUSION

This paper proposes a timely and precise congestion control

method called FastTune. In the spatial dimension, FastTune

leverages fine-grained feedback to respond to congestion pre-

cisely; In time dimension, It uses the switch feedback to make

up for the lack of control in the first RTT. It also uses ACK-

padding to shortens the feedback path and reduces the feed-

back delay. Compared with the state-of-the-art work, FastTune

significantly reduces FCT and achieves faster convergence,

higher throughput, and near-zero queueing at the same time.

Besides, this paper propose a calculation method for feedback

utility to prove the efficiency of FastTune’s feedback.
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