
BTDetect: An Insider Threats Detection Approach
Based on Behavior Traceability for IaaS

Environments
Li LIN1,2 , Shuang LI1, Xuhui LV1 Bo LI3

1College of Computer Science, Dept. of Information Technology, Beijing University of Technology, Beijing. China
2Beijing Key Laboratory of Trusted Computing, Beijing, China

3 State Key Laboratory of Software Development Environment, Beihang University, Beijing, China.
Email: linli_2009@bjut.edu.cn

Abstract—How to detect malicious insiders’ improper access to
tenant data has become more crucial in IaaS cloud environment,
especially with the cloud administrators gaining more control on
customers’ virtual machines and data in reality. In this paper, we
propose an insider threats detection approach based on behavior
traceability called BTDetect. First, we analyze the service
invocation interfaces of IaaS cloud environment, such as
computing service, remote call, management implementation and
virtualization management, and condense the complete process of
cloud user behavior. Using tree-based modeling technique, a
behavior-tree construction algorithm is proposed to construct the
normal behavior tree that can describe various legal operations of
cloud users. Second, we set up trace points of cloud service
behavior on multi-layer cloud service APIs, then we collect
information of each interface being invoked across multiple nodes.
Third, we use underlying virtualization behavior keyword
matching technology to match the collected behaviors with the
user's normal behavior tree and then the malicious internal threat
can be identified through tree-based integrity analysis. Finally,
some experiments are conducted to evaluate the feasibility and
veracity of the proposed method in Openstack platform. The
results suggest that our method can not only identify internal
threat but also have high recognition rate.

Keywords—IaaS loud security, virtualization, insider threats,
behavior traceability

I. INTRODUCTION

As one of the network-enabled technologies, cloud
computing has been broadly adopted in the industry through
numerous cloud service models [1]. According to Gartner
Forecast, the global cloud computing service market size will
reach 354.6 billion us dollars in 2022 [2]. Existing cloud service
models can be divided into three types: Infrastructure as a
service (IaaS), platform as a service (PaaS), and software as a
service (SaaS). IaaS usually provide users with the required IT
resources such as processors, memory, disks, networks and so
on by providing independent virtual machines. Users only need
to configure and install the operating system and upper
applications on the virtual machines.

Although cloud computing provides convenient computing
and storage services to tenants, it inevitably suffers the threat
from the Internet and some important new security issues are
also born [3]. Among the IaaS service, the virtual machine server
used by the tenant stores the data in the form of mirror files,

while the internal staff of the cloud service has complete control
over the tenant's data. Some of the recent security vulnerabilities
in the cloud environment are due to internal negligence. For
example, the bank information of 2 million vodafone customers
was attacked and leaked by insiders [4] and the infamous NSA
data theft by Edward snowden. In both cases, insiders stole data
after gaining access to the data.

While cloud service providers (CSP) typically make privacy
commitments to cloud users, there is still a risk that their data
will be compromised or corrupted. Recent research has focused
on protecting user data or virtual machines from unreliable CSPs.
Ali [5] proposed a secure data storage and sharing method based
on cloud environment, which uses trusted third parties to protect
user data and establishes a series of security measures from data
storage to data transmission. However, this will face the problem
of the transmission speed of user data between cloud
environment, which constrain the performance of the original
efficient cloud environment.

Kazim [6], Pandey [7] focused on the risk that the virtual
machine images of cloud users might be leaked after being
uploaded to the cloud environment. They proposed an AES
encryption method to store the encryption of user image to the
cloud platform, and then decrypt each time to complete the
protection of the image data. This method has a high time
complexity of encryption algorithm. With the increase of data
volume, user image will also get larger and larger, which will
greatly affect the virtualization performance of the cloud
environment. Tan [8], Xia [9], and Miu [10] use nested
virtualization to monitor the behavior of CSPs and protect the
security of virtual machines from tampering with malicious
CSPs. However, it needs to distinguish VMM-level operations
from user-level operations and requires a lot of extra work on
current cloud platform implementation.

The above researches assume that CSPs are not credible, but
in fact CSPs have no intention to disclose user data intentionally,
and the real enemy that threatens the security of cloud users is
internal attack. According to the report from the Cloud Security
Alliance, malicious internal attacks are listed as one of the most
important threats to cloud computing [3]. However, detecting
internal attacks is not an easy task. Firstly, the characteristics of
cloud services invoked by malicious insiders and cloud services
invoked by cloud users are indistinguishable. Secondly, even if
some malicious behavior features are obtained, there is no
guarantee that malicious actions other than these will not occur.

344

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00055

Finally, if we define normal behavior, we need to analyze the
normal behavior of the entire IaaS cloud service. Therefore, it is
actually necessary to propose some new behavior collection and
security detection technologies to detect the security of cloud
user data.

To solve the above problems, we propose an insider threats
detection approach based on behavior traceability called
BTDetect. Since the user data in the IaaS cloud environment is
mostly hosted to the cloud by the virtual machine image file, the
main concern in this paper is the detection of the access behavior
of the virtual machine image file. Firstly, we analyze the service
invocation interfaces of IaaS cloud environment, such as
computing service, remote call, management implementation
and virtualization management, and condense the complete
process of cloud user behavior. Using tree-based modeling
technique, a behavior-tree construction algorithm is proposed to
construct the normal behavior tree that can describe various legal
operations of cloud users. Secondly, we set up trace points of
cloud service behavior on multi-layer cloud service APIs, then
we collect information of each interface being invoked across
multiple nodes. Thirdly, we use underlying virtualization
behavior keyword matching technology to match the collected
behaviors with the user's normal behavior tree and then identify
malicious internal threat through tree-based integrity analysis.

Compared with the existing work, the main contributions of
this paper are as follows.

Considering that the existing machine learning-based
methods need to utilize known threat behavior libraries and
cannot identify unknown threats, this paper adopts the idea of
identifying malicious unknown internal threats based on normal
behavior, and proposes behavior tree construction method based
on API association analysis. Through the association analysis of
the IaaS cloud service call interface and related source code, a
normal behavior tree for the user's legal operation is constructed.

The existing cloud security auditing method only audits the
interface behavior of a cloud service, and cannot trace the data
access behavior of the cloud service user across multiple nodes,
and it is difficult to determine whether the current data access
request is issued by the user. This paper considers the situation
of malicious calls across multiple nodes and collects behavior
information that each interface is called across multiple nodes.
The collected information is matched with the behavior of the
previously constructed normal behavior tree to identify
malicious threats through tree-based integrity analysis.

We have implemented BTDetect on the Openstack cloud
platform and conducted several comprehensive experiments to
evaluate its validity and accuracy. The experimental results
show that BTDetect can not only identify internal threat but also
have high recognition rate.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III introduces the system
model. Section IV introduces BTDetect in detail. The
implementation of BTDetect in Openstack platform and the
experimental results are given in Section V. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

With the development of computer hardware [23-25],
software [26-27], and networks [28-29], security and
privacy[30-32] become a more and more important issue in

various applications. For example, in health care [33] and
autonomous drive [34], the security and privacy had been put as
the first priority in system design [35]. With the advance in big
data and cloud computing [36-37], data security [38-39] appears
to be a new hot research area. The current data security issues
for cloud users are generated by the outsourcing capabilities of
cloud services. Tenants lose absolute control over these
resources. Some malicious internals can use their permissions to
access and even tamper with user data and private information.

Paul [11] designed an internal threat detection method based
on malicious behavior, which provides the idea of behavior
based internal threat detection for this paper. Lou [12] detected
the resources occupied by service based on monitoring devices
usage. However, monitoring resources of computing, storage
and network can only aware the service exceptions but not
identify the malicious behaviors of insider. Gupta [13] proposed
various security risks and vulnerabilities in the cloud
environment under virtualization technology, and mentioned
that the data of cloud user is facing the risk of unauthorized
access and tampering.

Zhang [14] proposed to use CloudMonatt to improve the
security level of the cloud environment by verificating of the
security functions provided by the client VM's cloud virtual
machine. But this method can only be applied to the running
virtual machine and it cannot monitor the virtual machine
instance image file. Zhou [15] first proposed a behavior tree
based on the system call interceptor and tested the virtual
machine behavior based on the trusted technology. Cheh [16]
proposed a method of access logs behavior detection, which uses
the defined Markov model to detect low score behavior by input
the user behavior log. However, the internal threats in the cloud
environment can be realized through malicious API calls with
higher permissions. The behavior generated by these threats is
hard to be defined in advance with Markov model.

In the real IaaS cloud environment, malicious insiders use
their own permissions to invoke different node cloud service
interfaces to perform indirect illegal operations on user data.
Therefore, some scholars have proposed cloud security audit
technology to solve the above problems. Wang [17] elaborated
the research progress and shortcomings of current cloud security
audit in three aspects: log auditing, cloud storage auditing and
configuration auditing. Masetic [18], Bhamare [19] and Aldairi
[20] proposed the use of machine learning algorithms to detect
threats in cloud environments by analyzing threat models and
cloud environment architectures in cloud environments. Mishra
[21] used a machine learning decision tree algorithm to classify
a large number of virtual machine malicious system calls,
obtained malicious behavior related system calls and completed
classification detection based on the characteristics of malicious
behavior.

The above work shows that threat auditing based on machine
learning can detect some known threats, but still need to
constantly update threat model library to support the detection
of unknown threats. Tian [22] introduced a trusted third party to
verify whether the operation behavior log from a cloud user is
abnormal, but it only performed security auditing and detection
on a single node in the cloud environment and could not
accurately distinguish whether a legitimate access request from
a cloud user or a malicious insider is illegal when an internal
person invokes multiple different node services.

345

III. SYSTEM MODEL

The process of a normal cloud user using the IaaS cloud
service from the management interface to the user virtual
machine image is as shown in Fig.1. The cloud user needs to
obtain the authentication and authorization component such as
keystone when calling the cloud user service interface. After the
authentication is obtained, the cloud service interface can be
called normally. The malicious internal staff have high authority
and can indirectly operate the user image by calling some
interfaces in the calling process, thereby posing a threat to the
user image data file. For example, attackers can first invoke a
virtualization service process such as qemu-kvm at a compute
node to access a user image file and then they enter the virtual
machine system by starting the qemu-kvm process, or call qemu-
img to modify the image file. Secondly, attackers can invoke a
virtualization management process interface such as libvirt to
manipulate or monitor the running state of virtual machine.
Finally, attackers can invoke the computing service management
interface in the control component. According to the ID of the
user VM, they invoke related services such as power-on, power-
off, and suspend from the computing service management
interface to control the running state of virtual machine. After
that, they can indirectly access the image file through calls from
different levels of service interfaces to bring data threats.

Cloud service control
node

Cloud user interface

Computing service
interface

Remote call
interface

Cloud service compute node

Management
implementation interface

Virtualization
management interface

Virtualization process

VM
image

VM
image ... VM

image

VM

...
Guest

OS
Guest

OS

VM

...
Guest

OS
Guest

OS

VM

...
Guest

OS
Guest

OS

Fig.1. IaaS cloud service interface invocation process

The objective of this paper is to propose an internal threat
detection method based on behavior traceability called
BTDetect. The method can detect those malicious behaviors
where malicious insiders invoke various hierarchical cloud
services to access or tamper with users’ data.

IV. DESIGN OF BTDETECT

A. Working Principles
As shown in Fig.2, there are three modules introduced in

BTDetect, which are normal behavior tree building module,
behavior acquisition module and behavior detection module.

The normal behavior tree building module adopts a behavior
tree construction method based on multi-layer API association
analysis. It establishes different types of logical nodes according
to the calling relationship between different nodes. From the
user entry node to the last implementation node, the behavior of
each level in the cloud service corresponds to the node in the
behavior tree. Then a normal behavior tree library is provided

for subsequent internal threat discovery. Taking an open-source
cloud platform Openstack as an example, a behavior tree
represents different operational levels of current cloud service
interface, including a computing service (e.g, Nova) interface,
and virtualization management (e.g, libvirt) interface etc.

Each level has its own independent user's behavior using
virtual machine service-related calls, which are the basic nodes
of the behavior tree. Before using the algorithm to analyze the
relevant source code, we need to define the keywords for each
layer of behavior-related source code. If there is a keyword, the
node is created according to the nature and added to the behavior
tree. The specific process is shown in Fig.3.

Source library
Openstack
source code

Libvirt
source code

User normal
behavior tree

Building

Hierarchical keyword library

IaaS cloud
environment

Behavior
Detection based

on tree
traceability

Normal
behavior tree

library

Result of
behavioral testInsert behavior

collection point

 Behavior
information
acquisition

Fig.2. Architecture of BTDetect

Source code library
Oppenstack
source code

Libvirt
source code

Algorithm source
code analysis Behavior

tree library

Hierarchical
keyword library

Fig.3. Behavior tree building process

The behavior acquisition module mainly sets the traceability
point of the cloud service behavior on the multi-layer APIs such
as the computing service interface, the remote calling interface,
the management implementation interface and the virtualization
management interface. A malicious insider can threaten an
image file by calling a computing service interface, a
management implementation interface, a virtualization
management interface and a virtualization process. Hence,
behavior collection points are introduced at these interfaces or
processes. The behavior records can be obtained and collected
according to time and behavior type when the relevant service
interface is called, as shown in Fig.4.

Cloud service provider

Control node

Computing service
interface

Remote call
interface

Computing node

Management
implementation interface

Virtualization
management interface

Virtualization process

Image file Image file

Collection
point

LSM kernel hook

Cloud user

Fig.4. Set the behavior collection points in the IaaS cloud environment

346

Based on the information collected by each traceability
point, the behavior detection module uses the behavior keyword
matching technology to track and match the behavior in the
user's normal behavior tree constructed earlier. Malicious
internal threats are identified through tree-based integrity
analysis. The internal threat detection process is shown in Fig.5.

Get the lowest level
behavior

Compare with the leaf
nodes in the behavior

tree library

Whether there is a matched
behavior tree

YES
Match behaviors in the
behavior tree in turn up

Whether there is a complete
matching behavior tree

YES

Behavior
tree library

Start

end

Collect behavior

Judge
abnormal
behavior

Judge
abnormal
behaviorJudge normal

behavior

NO

Fig.5. Internal threat detection process based on behavioral traceability

B. Building normal behavior tree

TABLE I. BEHAVIOR TREE BUILDING ALGORITHM FOR MULTI-LEVEL API
ASSOCIATION ANALYSIS

Input: Specify virtual machine service behavior Useraction,
keyword library and Openstack, part of source code in the
libvirt
Output :Behavior tree built according to the specified behavior
Begin
1. Find Useraction from the behavior comparison library;
2. Establish the root node

rootNode = userActionMap.getvalue(Useraction);
3. Go to the nova-api layer and read the api file;
4. Establish node by behavior action and nova-api library

novaApiNode = novaApiMap.getvalue(behaviorAction)
rootNode.addSon(novaApiNode);

5. Enter the manager file in the nova-compute layer;
6. Establish node by nova-api action and nova-compute

library
novaComputeNode=novaComputeMap.getvalue(novaApiAction)
novaApiNode.addSon(novaComputeNode);

7. Enter the driver file in the libvirt-api layer;
8. Establish node by nova-compute action and libvirt-api

library
libvirtApiNode=libvirtApiMap.getvalue(novaComputeAct
ion);

9. Enter the qemu-driver file in the libvirtaction layer;
10. Establish node by nova-compute action and qemu-driver

library
qemuDriverNode=qemuDriverMap.getvalue(libvirtApiAc
tion)

 libvirtApiNode.addSon(qemuDriverNode);
11. Returns the full behavior tree of the current service

rootNode;
End

We need to describe every normal behavior process of users
calling Openstack cloud service using the behavior tree, where
each layer of the behavior tree represents the operation of each
layer in the cloud environment. First, we need to define the
keywords of each layer of behavior-related source code, which
leads to the keyword library corresponding to each layer of
behavior. Secondly, after getting the user's operation behavior,
we traverse the various levels of the cloud service, match the
source code and behavior-related functions from the keyword
library, and create corresponding behavior tree nodes through
multi-layer API association analysis and logic. Finally, a leaf
behavior node is created to complete the construction of normal
behavior tree. The specific algorithm is shown in Table I.

Using the algorithm in Table I., a behavior tree instance for
a relatively typical user operation such as creating a snapshot is
established as shown in Fig.6.

save

User request

nova-api

utils
qemu-img

domaincreate
withflags

qemuprocess
start

virdriver

nova-compute

save

libvirt-api create_domain

libvirt-action

qemu-api

snapshot

create_
snapshot

snapshot

rpcsnapshot_
instance

Fig.6. Normal behavior tree for users to create virtual machine snapshots

C. Behavior acquisition
Based on the analysis of the source code of the IaaS cloud

platform, the computing service interface, management
implementation interface, virtualization management interface,
and virtualization process in Openstack are closely related to
virtual machine services. In this section, we need to add a
behavior collection point at the above interface. Specifically, we
need to add a collection point at each behavior-related interface.
For example, we can output the time of operation record when
the specific calling behavior interface name on the computing
service interface or the virtualization management
interface log.(time+{api})). In addition, because the call to the
virtualization process is relatively on the low-level, it is
impossible to collect its behavior directly in user space by
modifying the source code. Therefore, with the help of our
previous work [40], the file access hook function is set at the
bottom level to monitor the system calls related to the user's
image file access.

The virtualization process monitoring algorithm is shown in
Table II.

347

TABLE II THE CORE ALGORITHM OF THE MONITORING OF VIRTUALIZATION
PROCESS

Input: The operation of accessing to the file by progress
Output: The information about the operation of virtualization
process
Begin
1. Define a protected image file protect_file[][] = new Files[][];
2. Define the virtualization process virt_current[][]

virt_current[][] = new Process[][];
3. Intercept file reading and writing operations to kernel hook

functions
readHook = new Hook()
readHook.load()
writeHook = new Hook()
writeHook.load();

4. Get the process information of the currently reading and
writing files current
current = readHook.getCurrent()+writeHook.getCurrent();

5. Get reading and writing file information file_path
file_path[] = current.getFilePath();

6. if(file_path in protect_file[][])
7. if (current in virt_current[][])
8. printk(“Time : %d file:%s, current: %s\n”, tm, filp->path,

current)
9. return 0
End

By setting behavior collection points at the virtualization
process in the Openstack cloud environment, we can obtain the
behavior record of the user accessing the image file when the
virtual machine related service is invoked in the user layer or the
cloud environment intermediate node. The behavior information
includes the information of the process of underlying
virtualization, which can be obtained in the computing service
log of the control node, the management implementation log of
the computing node, the virtualization management log and the
LSM hook function log.

After getting the behavior information, we need to get the
behavior in each process. And we need to use the collection
algorithm to create a complete behavioral process to be detected,
and provide the necessary behavior information for the threat
identification method. The algorithm for collecting behavior to
be detected is shown in Table III. Different from creating a
normal behavior tree, we need to use the "bottom-up" method to
generate the information of behaviors that need to be detected
based on behavior collection.

TABLE III ALGORITHM FOR COLLECTING BEHAVIOR THAT NEED TO BE
DETECTED

Input: Various log files of operational behavior
Output: The information of behavior that need to be detected
and related to the current operation
Begin
1. Find libvirtApiAction from the virtualization layer log file;
2. create a leaf node

leafNode = libvirtApi_log.get(libvirtApiAction);
3. Find lsmAction in the log file of the LSM kernel of the

virtualization management layer
libNode = lsm_log.get(lsmAction);

4. If yes, established the virtualized management layer node

if(libNode==null)
 return leafNode

else
 leafNode.parent = libNode;

5. Find managerAction in the log file of the management
implementation layer
managerNode = manager_log.get(managerAction);

6. If yes, established the management implementation layer
node

if(managerNode==null)
 return libNode

else
 libNode.parent = managerNode;

7. Find calculationAction in the log file of calculation service
layer
calculationNode = calculation_log.get(calculationAction);

8. If yes, established the calculation service layer node
if(calculationNode==null)

 return managerNode
else

 managerNode.parent = calculationNode;
9. Find userAction in the log file of the user layer

userNode = user_log.get(userAction);
10. If yes, established the user layer node

if(userNode==null)
 return calculationNode

else
 calculationNode.parent = userNode;
11. Return the collected behavior userNode;
End

According to the above algorithm, we can get the
information of behavior that need to be analyzed and related to
the previous operation from the Openstack logging files.

D. Behavior Detection
In the Openstack cloud environment, we need to set the

behavior tree matching flag and the level pointer. Then we need
to get the underlying behavior of the current collection of
behavior information, and then traverse all the behaviors of the
behavior tree in the behavior library to find the matching
behavior tree. If the current layer is completely matched, we
need to continue to match upwards. If the behavior does not
match completely, we need to modify the flag bit and jump out
of the current logic and return the abnormal behavior flag and
the level at which the exception call occurs; If it is exactly
matched to a complete behavior tree at the end, it returns the flag
of normal behavior and jumps out of the current program. The
internal threat discovery algorithm based on behavior
traceability is shown in Table IV.

TABLE IV THE DETECTION ALGORITHM OF BEHAVIOR TRACEABILITY

Input: Behavioral information that already hierarchically
collected, normal behavior tree library, action and initiated
time node
Output: Determine whether it is abnormal or not
Begin
1. Set the behavior tree matching flag

flag = 1;

348

2. define a hierarchical pointer to the lowest level
detectPointNode = userTree.getLeafNode
normalNode = normalTree.getLeafNode;

3. Get the lowest level of behavior based on time
userTime = detectPointNode.getTime

4. Get the behavior tree in the behavior library in turn, If
there is a upper layer behavior node and time matching,
iteratively get the parent node of the behavior
while(detectPointNode.parentNode!=null){
if(userTime==normalNode.time&&detectPointNode.beha
vior==normalNode.behavior){
detectPointNode =detectPointNode.getParent
normalNode = normalNode.getParent
 }
else{
 flag = 0;
 currentLayer = normalNode.getCurrent;
 break;
 }

5. process match flag and return current info
 if (flag==1)
 return “Normal behavior”
 else
 return “Abnormal behavior”+current layer
End

V. EVALUATION

A. Experimental environment
We have deployed BTDetect on the Openstack cloud

platform, the specific architecture is shown in Fig 7. The
version of Openstack is kilo. The Openstack cloud platform is
divided into control nodes, computing nodes, network nodes and
storage nodes. Related to virtual machine services are control
nodes and computing nodes. The virtual machine service
scenario is provided by using the Openstack simulation cloud
platform and the normal behavior tree creation module obtains a
normal behavior tree library by analyzing the Openstack source
multi-layer API association; The behavior collection module
collects behavioral actions of accessing user data at different
levels; The behavior detection module is responsible for tracking
and matching the collected behavior with the normal behavior
tree to know whether the current behavior is abnormal.
Therefore, through the trace analysis of the current user data
access behavior, the discovery of the malicious behavior of the
IaaS cloud environment is completed.

Kernel

Hardware

Nova-api Libvirt

Qemu

Image

Kernel

Behavior
collection

authorization

Q

Hardware

Control node Computing node

Behavior
detection

Normal
behavior tree

creation modle

Source code

on m

Analysis
result

Cloud
user

File access
monitoring function
LSM hook

Fig.7. Implementation of BTDetect in Openstack

The Openstack version used in the experiment is the version
of Kilo. The Openstack environment consists of two servers,
which is a controller node and a compute node. It has the
following configuration: 8GB Memory, Intel(R) Core i5-4590
CPU @ 3.30GHz processor and Centos 7 64-bit Operating
system.

B. Effectiveness
In this section, we experimented with the effectiveness of the

behavior acquisition module and the threat identification
module. It is necessary to simulate a malicious internal person
to make a call to the cloud service. In the experiment, we
protected a user's image file with the image name 36c97be5-
8fea-432a-99f8-la740926ee51.

We have made unauthorized remote calls to the operation of
shutdown. Because the behavior tree level of the operation of
shutdown involves the nova-api, libvirt, and qemu processes, we
only need to collect behaviors that involves the computing
service nova, the virtualization management libvirt, and the
virtualization process qemu-kvm, as shown in Fig.8. It can be
seen that there was authorized operation by the user 4da* in the
time 2021-4-18 09:23, 09:45, 12:44, 12:47, 12:48 in nova log.

Fig.8. The results about the collection information of NOVA Node behavior

Next, the libvirt behavior information is analyzed. The result
is shown in Fig.9. Since libvirt's time zone is the western time
zone, log time plus 8 hours is Beijing time. That means, the
libvirt behavior corresponds to the nova log at 09:23, 09:45,
12:44, 12:47, 12:48 on 2021-4-18. But at 12:35, 12:39, 12:40,
12:44, the libvirt behavior could not correspond to the nova log.
This proves that the behavior records of these virtual machines
are emitted directly through libvirt operations and not through
the authorized nova component.

Fig.9. The collection results of the information of the Libvirt node behavior

Finally, we need to analyze the behavior of the qemu
virtualization process and use dmesg to view the output of
kernel.

349

Fig.10. The collection results of the information of the Qemu node behavior
As shown in Fig.10, you can see a behavior record of a

virtualization process at 2021-4-18 12:21. However, there is no
corresponding behavior record when analyzing the behavior of
the upper layer computing service interface. This proves that the
current virtualization behavior is emitted by invoking the qemu
process rather than the authorized Nova component.

The generated normal behavior tree of the user shutdown
operation according to the previous multi-layer API association
analysis is as shown in Fig.11. After the user's request is sent, it
is first forwarded to the libvirt tool layer through the nova-api
layer and then it is implemented by invoking the process of qemu
virtualization. Then we need to use an internal threat discovery
algorithm based on behavioral tracing. Then we input the action
that needs to be detected and the time node that the action is sent.

shutdown

vir_domain_
shutdown

qemuAgent
Shutdown

guest-shutdown

User request

nova-api

Virt tools

libvirt qemu guest
agent

qemu_agent

power
_off

Fig.11. normal behavior tree about the shutdown of user virtual machine
According to the algorithm in Table IV, the result can be

obtained as shown in Fig.12. The "shutdown" behavior at 09:45
and 12:44 is authorized, while the behavior at 12:35 and 12:21
is unauthorized. The reasons are as follows: The behavior tree
constructed by the virtualization behavior at time 12:35 is not
complete, so we consider it a malicious invocation behavior. We
judged that malicious insider invoked virtualization
management tools to pose a threat to user image files without
authorization. Similarly, 12:21 is a malicious behavior of calling
the virtualization process; At 09:45 and 12:44, the behavior
information is consistent with the relevant behavior tree, so it is
the normal behavior of the user. The experimental results show
that behavior acquisition module and behavior detection module
can be combined to detect the malicious behavior that internal
users call cloud services to access user data.

Fig.12. The detection results of internal malicious threats

C. Accuracy
In this section we test the accuracy of the discovery of

malicious internal threat. We chose some typical operations of
users, "power on, power off, pause, lock, snapshot." We will call
different levels of interfaces or processes such as computing
service interfaces, computation management interfaces,

virtualization management interfaces, virtualization processes,
etc. to simulate malicious calls by malicious insiders at multiple
levels. In the experiment, we performed 50 rounds of detection
for each operation and count the detection accuracy of malicious
behavior.

Fig.13. The accuracy of the discovery of malicious behavior for
different virtualization operations

As shown in Fig.13, it can be seen that the malicious
behavior recognition accuracy of the locking operation is 100%,
but the operations such as power-on, power-off, pause, and
snapshot do not reach the complete recognition accuracy. The
reasons are as follows. In the behavior tree library established in
Section IV.B, the locking operation does not overlap with other
operating behavior tree nodes or exist as a subtree with other
operation behaviors. That is, the locking operation is not a sub-
operation of other operations, so the detection based on behavior
traceability can obtain 100% recognition accuracy. However,
operations such as power-on, power-off, pause, and snapshot
may overlap with other operating behavior tree nodes or even
subtrees. That is, the above virtualization operation may
constitute a sub-operation of other operations or include other
operations. Therefore, in the threat identification analysis of
such operations, there will be conflicts with other operations.
Although it is not completely accurate, the overall threat
identification accuracy is about 90%.

Currently, the behavior tree is constructed semi-manually,
and ongoing work will explore automated approaches based on
machine learning or some heuristic classification algorithm such
as [41].

VI. CONCLUSION

The transparency of cloud services makes users lose absolute
control over private data, which make cloud environment
security issues more challenging than traditional computing
environments. One of the main security issues is the security of
the virtualized environment. Although extensive research has
been done on the security of cloud virtualization environments,
little has been done to specifically focus on internal attacks in
cloud environments. In this paper, we propose BTDetect, which
can detect the malicious behavior of malicious internal
personnel in the IaaS environment to illegally invoke the cloud
service to access user data. We have implemented BTDetect in
a real Openstack cloud environment and the experimental results
show that BTDetect can effectively identify those threats that
internal personnel maliciously invoke cloud services to access
user data and has a high recognition rate.

86%

96%

88%

100%

94%

75%

80%

85%

90%

95%

100%

105%

power on power
down

pause lock snapshot

Th
e

ac
cu

ra
cy

 o
f t

he
 d

is
co

ve
ry

 o
f

m
al

ic
io

us
 b

eh
av

io
r

Different virtual machine operations

350

REFERENCES

[1] Gai K, Guo J, Zhu L, et al. “Blockchain Meets Cloud Computing: A
Survey”. IEEE Communications Surveys & Tutorials, 2020, PP(99):1-1.

[2] K Costello, and M Rimol. Gartner Forecasts “Worldwide Public Cloud
End-User Spending to Grow 18% in 2021,” [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-
gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-
18-percent-in-2021

[3] Top Threats to Cloud Computing: Egregious Eleven,” Cloud Security
Alliance. [Online]. Available: https://cloudsecurityalliance.org/press-
releases/2019/08/09/csa-releases-new-research-top-threats-to-cloud-
computing-egregious-eleven/.2021.

[4] “Network Security Events,” Cloud Computing Security. [Online].
Available: http://cloud.idcquan.com/yaq/134034.shtml.

[5] M Ali, R Dhamotharan, E Khan, S U Khan, A V Vasilakos, K Li, and A
Y Zomaya. “SeDaSC: Secure Data Sharing in Clouds,” IEEE Systems
Journal 11(2): 395-404. 2017.

[6] M Kazim, R Masood, and M A Shibli. “Securing the virtual machine
images in cloud computing,” In proceedings of the 6th International
Conference on Security of Information and Networks. 2013.

[7] A Pandey, and S Srivastava. “An approach for virtual machine image
security,” In proceedings of International Conference on Signal
Propagation and Computer Technology, pp. 616-623. IEEE. 2014, July.

[8] C.Tan, Y Xia, H Chen, and B Zang. “Tinychecker: Transparent protection
of vms against hypervisor failures with nested virtualization,” In
proceedings of IEEE/IFIP 42nd International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 1-6. IEEE. 2012, June.

[9] Y Xia, Y Liu, and H Chen,. “Architecture support for guest-transparent
VM protection from untrusted hypervisor and physical attacks,” In
proceedings of the 19th International Symposium on High Performance
Computer Architecture, pp. 246-257. IEEE. 2013, February.

[10] T Miu,. “Research on Operating System Security and Performance in
Virtualized Environments,” (Unpublished master dissertation). Shanghai
JiaoTong University, Shanghai, China. 2015

[11] S Paul, and S Mishra. “LAC: LSTM AUTOENCODER with Community
for Insider Threat Detection,” In proceedings of the 4th International
Conference on Big Data Research, pp. 71-77. ACM. 2020, November.

[12] P Lou, Y Yang, and J Yan. “An Anomaly Detection Method for Cloud
Service Platform,” In proceedings of the 4th International Conference on
Machine Learning Technologies, pp. 70-75. ACM. 2019, June.

[13] M Gupta, D. K Srivastava, D. S and Chauhan. “Security challenges of
virtualization in cloud computing,” In proceedings of the Second
International Conference on Information and Communication
Technology for Competitive Strategies, pp. 1-5. ACM. 2016, March.

[14] T Zhang, and R. B Lee. “CloudMonatt: An architecture for security health
monitoring and attestation of virtual machines in cloud computing,” Int’l
Symposium on Computer Architecture.Vol.43, pp.362-374. ACM. 2015.

[15] Z Zhou, L Wu, Z Hong, M Xu, and F Pan. “Dtstm: dynamic tree style
trust measurement model for cloud computing,” Ksii Transactions on
Internet & Information Systems, 8(1): 305-325. 2014

[16] C Cheh, U Thakore, A Fawaz, B Chen, W G Temple, and W H Sanders.
“Data-driven model-based detection of malicious insiders via physical
access logs,” ACM Trans. on Mod. and Com. Simu. 29(4): 1-25. 2019.

[17] W Wang, X Du, N Wang, et al. “Review of Cloud Computing Security
Audit Technology,” Computer Science, 44(7): 16-20. 2017.

[18] Z Masetic, K Hajdarevic, and N Dogru. “Cloud computing threats
classification model based on the detection feasibility of machine learning
algorithms,” IEEE 40th Int’l Convention on Information and Comm,
Technology, Electronics and Microelectronics, pp. 1314-1318. 2017.

[19] D Bhamare, T Salman, M Samaka, A Erbad, and R Jain. “Feasibility of
supervised machine learning for cloud security,” IEEE Int’l Conf. on
Information Science and Security (ICISS), pp. 1-5. 2016, December.

[20] M Aldairi, L Karimi, and J Joshi. “A trust aware unsupervised learning
approach for insider threat detection,” In proceedings of the 20th

International Conference on Information Reuse and Integration for Data
Science, pp. 89-98. IEEE. 2019, July.

[21] P Mishra, E S Pilli, V Varadharajan, and U Tupakula. “Securing virtual
machines from anomalies using program-behavior analysis in cloud
environment,” IEEE HPCC/SmartCity/DSS Conf., pp. 991-998, 2016.

[22] H Tian, Z Chen, C C Chang, M Kuribayashi, Y Huang, Y Cai, Y Chen,
and T Wang. “Enabling public auditability for operation behaviors in
cloud storage,” Soft Computing, 21(8): 2175-2187. 2017.

[23] Z. Shao, M. Wang, Y. Chen, et al., “Real-time dynamic voltage loop
scheduling for multi-core embedded systems,” IEEE Trans. on Circuits
and Systems, 54 (5), 445-449, 2007

[24] M. Qiu, Z. Ming, J. Li, S. Liu, B. Wang, Z. Lu, “Three-phase time-aware
energy minimization with DVFS and unrolling for chip multiprocessors,”
Journal of Systems Architecture 58 (10), 439-445, 2012

[25] M. Qiu, E. Khisamutdinov, et al., “RNA nanotechnology for computer
design and in vivo computation,” Philosophical Transactions of the Royal
Society A, 2013

[26] K. Zhang, J. Kong, M. Qiu, G. Song, “Multimedia layout adaptation
through grammatical specifications,” Multimedia Systems 10 (3), 245-
260, 2005

[27] L. Tao, S. Golikov, et al., “A reusable software component for integrated
syntax and semantic validation for services computing,” IEEE
Symposium on Service-Oriented System Engineering, 127-132, 2015

[28] M. Qiu, Z. Ming, J. Li, J. Liu, G. Quan, Y. Zhu, “Informer homed routing
fault tolerance mechanism for wireless sensor networks,” J. of Systems
Archi. 59 (4-5), 260-270, 2013

[29] J. Li, M. Qiu, J. Niu, et al., “Feedback dynamic algorithms for
preemptable job scheduling in cloud systems,” IEEE/WIC/ACM conf. on
Web Intelligence, 2010

[30] Z. Zhang, J. Wu, et al., “Jamming ACK attack to wireless networks and a
mitigation approach,” IEEE GLOBECOM conf., 1-5, 2008

[31] X. Tang, K. Li, et al., “A hierarchical reliability-driven scheduling
algorithm in grid systems,” Journal of Parallel and Distributed Computing
72 (4), 525-535, 2012

[32] K. Gai, M. Qiu, X. Sun, H. Zhao, “Security and privacy issues: A survey
on FinTech,” International Conference on Smart Computing and
Communication, 236-247, 2016

[33] K. Gai, M. Qiu, L. Chen, M. Liu, “Electronic health record error
prevention approach using ontology in big data,” IEEE HPCC conf., 2015

[34] H. Su, M. Qiu, H. Wang, “Secure wireless communication system for
smart grid with rechargeable electric vehicles,” IEEE Communications
Magazine 50 (8), 62-68, 2012

[35] J. Niu, C. Liu, et al., “Energy efficient task assignment with guaranteed
probability satisfying timing constraints for embedded systems,” IEEE
Trans. on Parallel and Distributed Systems, 25 (8), 2043-2052, 2013

[36] Y. Guo, Q. Zhuge, J. Hu, et al., “Data placement and duplication for
embedded multicore systems with scratch pad memory,” IEEE Trans. on
CAD, 2013

[37] H. Zhao, M. Chen, et al., “A novel pre-cache schema for high performance
Android system,” Future Generation Computer Systems 56, 766-772,
2016

[38] K. Gai, M. Qiu, B. Thuraisingham, L. Tao, “Proactive attribute-based
secure data schema for mobile cloud in financial industry,” IEEE 17th
HPCC, 2015

[39] K. Gai, M. Qiu, H. Zhao, J. Xiong, “Privacy-aware adaptive data
encryption strategy of big data in cloud computing,” IEEE 3rd CSCloud
conf., 2016

[40] L. Lin, S. Li, B. Li, J. Zhan, Y. Zhao. “TVGuarder: A trace-enable
virtualization protection framework against insider threats for IaaS
environments,” In Cyber Security and Threats: Concepts, Methodologies,
Tools, and Applications, pp. 638-658. IGI Global. 2018.

[41] Y. Hua, K. Gai, Z. Wang, “A Classification Algorithm Based on
Ensemble Feature Selections for Imbalanced-Class Dataset,” In IEEE
BigDataSecurity conf.. 2016.

351

