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Abstract—In this paper, we are trying to find a algorithm for
scheduling DAG (Directed Acyclic Graph) tasks in heterogeneous
embedded systems to minimize energy consumption while meet-
ing the reliability requirement. Like many traditional algorithms,
we divide the task scheduling algorithm into two phases, the
task priority calculation phase and the task allocation phase.
In the task priority calculation phase, we proposes a priority
calculation algorithm IOD based on the difference in task’s input
and output data. In the task allocation stage, we proposes a task
allocation algorithm based on fault-tolerant technology of task
replication and DVFS technology. Combining the two phase, we
get three scheduling algorithms, IODS, IODQ and IODR. In the
experimental part, we compare the performance of the algorithm
proposed in this paper with existing research algorithms (EFSRG
algorithm and HRRM algorithm). The analysis of experimental
results shows that the IODS algorithm is a better choice.

Index Terms—reliability, heterogeneous, energy, scheduling
algorithms

I. INTRODUCTION

A. Background

As an important part of embedded system design, task

scheduling algorithm has been studied and applied widely.

In recent years of research, as a measure of the performance

of scheduling algorithms, reliability and energy consumption

have proved to be related issues. The task scheduling problem

on heterogeneous platforms with high reliability and low

energy consumption proved to be an NP-hard problem [1]. Qiu

et al. had proposed a novel heuristic algorithm to solve this

problem for embedded computer systems [2] in 2009. The goal

of most heuristic algorithms is to find a feasible solution rather

than an optimal solution. Early scheduling algorithms set the

shortest scheduling length as the goal, with the development

of hardware and the complication of computing tasks, research

on energy saving and reliability has gradually emerged [3] [4].

This paper was supported by the Key Project of Scientific Research Plan
of Hubei Provincial Department of Education (Grant No. D20201102)

After the DVFS (Dynamic Voltage and Frequency Scaling) [8]

technology was proposed, many scheduling algorithms pro-

posed energy-saving optimization based on DVFS technology

by reducing the operating frequency of the processor, it is

indeed possible to reduce the energy consumption of task

execution [5]. In those scheduling algorithms that focus on re-

liability, the importance of tasks can be quantified as reliability

requirements according to their character [6]. Existing studies

have proposed many algorithms to meet task’s reliability, such

as task replication [9], primary-backup, checkpoint and other

fault-tolerant means [7] [11] [12]. However, it has been proven

in the literature that reducing the execution frequency of

the processor may lead to an increase in the instantaneous

failure rate of the processor, then resulting in task execution

failure. According to the relationship between task scheduling

reliability and energy consumption, finding a high-reliability

and low-energy scheduling algorithms is essential for the

development of embedded heterogeneous multi-core systems

[13] [14].

B. Motivation

Considering the scheduling length, energy consumption or

reliability separately, many excellent scheduling algorithms

can be found in the existing research [10]. But it is impractical

that the scheduling algorithm that considers the scheduling

length, energy consumption and reliability performance alone

does not consider the connection of the three [15]. Random

algorithms has superior performance, but the algorithm com-

plexity is too high and the calculation cost is uncontrollable.

C. Contribution

In this paper, we study the scheduling problem of DAG

graph task sets in heterogeneous embedded systems, compre-

hensively consider energy consumption and reliability, and aim
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to find a heuristic scheduling algorithm that reduces energy

consumption while meeting the reliability constraints of tasks.

1. We explained the model assumptions used in the schedul-

ing algorithm, and described the scheduling problem to

be solved in this paper in detail.

2. In the task priority calculation stage, we propose a task

priority calculation algorithm IOD based on the differ-

ence between the input and output of the task data.

3. In the task allocation stage, we proposed three traversal

rules based on the fault-tolerant technology of task repli-

cation and DVFS technology.

4. Designed an experiment to compare the algorithm pro-

posed in this paper with the EFSRG algorithm [16] and

the HRRM algorithm [17], and analyze the experimental

results.

Outline: The structure of this paper is as follows. Section 1

is the introduction of this paper, which introduces the research

background and research motivation. Section 2 introduces

related research work. Section 3 introduces related models and

problem statement. Section 4 and Section 5 describe the details

of the algorithm implementation, experiments, and the analysis

of experimental results. Section 6 is the conclusion.

II. RELATED WORK

The scheduling research of embedded systems is classified

into two categories according to the processor system, single-

core scheduling and multi-core scheduling. Early research

mainly discussed the single-core scheduling [18] [19] [20].

With the development of multi-core systems, the research on

multi-core scheduling has been paid more and more attention

[21] [22] [23]. Multi-core systems are divided into homoge-

neous and heterogeneous [24]. With the advent of the big data

era, scheduling algorithms that reduce energy consumption and

improve reliability have become research hot-spots. Qiu et al.

had done many important works in this area [25] [26] [27].

Among the existing scheduling algorithms, some papers

[28] [29] [30] focus on improving the reliability, while some

papers [31] [32] [33] focus on reducing the energy consump-

tion.

On reliability, the goal is to reduce the impact of transient

and permanent failures of the processor system. There are

many factors that cause processor system failures, including

high temperature, hardware failure, etc. [34] [35]. Since per-

manent faults account for a low proportion of all faults during

task execution, most studies on reliability scheduling mainly

consider transient faults [36].

Regarding the discussion of energy consumption, the pur-

pose is to reduce the energy consumption of application. As we

all know, many embedded systems base on DVFS technology

to achieve the purpose of energy saving, so most studies on

energy-saving scheduling also adopt this technology [7].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Task Model

An application could be represented by a DAG (Directed

Acyclic Graph), and each DAG is represented as G = {N,E},

N represents a set of nodes in G, and each node τi ∈ N
represents a task, there is T = {τ1, τ2, ..., τn}, n is the

number of task. E represents the directed edge set of the DAG,

which is the communication cost between tasks. ei,j ∈ E is

the computation cost between task τi and task τj , there is

E = {ei,j |i, j ≤ n, i �= j}. The execution cost of the task node

on each processor at the highest frequency is represented by

W , wi,k ∈ W represents the τi execute on the processor uk

at the maximum frequency fmax
k (About the processor core

model we will introduce in the next subsection), there is

W = {wi,k|i ≤ n, k ≤ m}.
We have an example of DAG task set as follow, show in

Figure 1, the reliability goal is Rreq = 0.95.

(a) an example of DAG task set with
10 tasks

(b) the execution cost of the task
node on each processor at the highest
frequency

Fig. 1. An example DAG task

B. Processor Model

The processor model is composed of a set of heteroge-

neous fully connected processor, where each processor can

independently adjust voltage and frequency based on DVFS

technology, the processors set could be represented by U =
{u1, u2, ..., um}, m is the number of processor. Each processor

uk can executed with a discrete set of frequency Fk =
{fmin

k , fmax
k , f low

k }, fmin
k , fmax

k is the lowest frequency and

the highest frequency that uk can reach in terms of hardware

performance, f low
k is the actual frequency lower limit, the

value depends on the actual task set data and processor system

parameters.

C. Reliability Model

The execution of task may fail due to hardware failure, high

temperature and other uncertain factors. This paper establish

a reliability model based on transient failure probability refers

to the existing reliability scheduling research. The model uses

the exponential function based on execution time and fault rate

to express mission reliability.

When the task is executed, the fault rate can be expressed by

λ, and the fault rate is only related to the hardware parameter.

The fault rate when the processor is executed at the frequency

f can be expressed as,
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λ(k, f) = λk × 10
dk(1−f)

1−fmin
k (1)

Among them, λk is the fault rate executed at the frequency

fmax
k of the processor uk, dk is a static parameter related to the

hardware, reflecting the sensitivity of the probability of failure

to frequency changes, and fmin
k is the minimum frequency of

uk.

Further, the reliability of the task replica can be expressed

by r, and the reliability of task τi executed at frequency fi,k
on the processor uk is can be expressed as:

r(i, k, fi,k) = e
−λ(k,fi,k)×wi,k× fmax

k
fi,k (2)

In particular, when fi,k = 0, it means that the task has no

replica on this processor, r(i, k, fi,k) = 0.

The reliability of task τi is calculated by the reliability of

each replica of the task as:

ractual(i) = 1−
m∏

k=1

(1− r(i, k, fi,k)) (3)

So the reliability of the task set could represent as:

Rtotal =
n∏

i=1

ractual(i) (4)

Our target is to let

Rtotal ≥ Rreq (5)

Since the reliability Rtotal given by the task set represents

the reliability of the entire task set, and each task is dynami-

cally allocated processor and operating frequencies during the

scheduling process, Rtotal needs to be decomposed into task

reliability requirements rreq(i) as:

rreq(i)

=
Rreq∏

j∈allocated(i) ractual(j)×
∏

j∈unallocated(i) rreq(j)

=
Rreq∏

j∈allocated(i) ractual(j)×
∏

j∈unallocated(i)
n
√
Rreq

(6)
allocated(i) represents the set of tasks that have been allo-

cated before task τi in the priority queue, and unallocated(i)
represents the set of tasks that have not been allocated after

task τi in the priority queue.

Then, if each task τi in the task set satisfies ractual(i) ≥
rreq(i), then the inequality (5) can be satisfied, that is, the

reliability requirement of the task set can be satisfied.

D. Power Model

The power consumption of the processor is mainly com-

posed of frequency-related dynamic consumption, frequency-

independent dynamic consumption and static consumption.

Among them, the frequency-related dynamic power consump-

tion is the main component, and the total power of the

processor is represented by P , and there is

P (k, f) = Ps,k + g(Pind,k + Pd,k)

= Ps,k + g(Pind,k + ck × fα(k)) (7)

Ps,k means frequency-independent static power, Pind,k

means frequency-independent dynamic power, Pd,k means

frequency-dependent dynamic power, g means system state,

g = 0 when system is in sleep, g = 1 when system is

running, and ck means the switching capacitance of processor,

its a hardware parameter, αk represents the dynamic power

exponent.

Further, the dynamic energy consumption of the replica of

task τi executed on the processor uk at frequency fi,k can be

expressed as:

Ed(i, k, fi,k) = (Pind,k + ck × fαk)× wi,k × fmax
k

fi,k
(8)

The scheduling dynamic energy consumption of task τi is

calculated by the dynamic energy consumption of each replica

of the task.

Ed actual(i) =
m∑

k=1

Ed(i, k, fi,k) (9)

The static energy consumption of the task set is related to

the SL(schedule length) of the task.

Es = SL× Ps (10)

The total energy consumption of the task set can be ex-

pressed as:

Etotal =

n∑
i=1

Ed actual(i) + Es (11);

In particular, when fi,k = 0, it means that the task has no

replica on this processor, Ed(i, k, fi,k) = 0.

E. Problem Formulation

1) Problem Description: According to the task model,

processor model, reliability model and energy consumption

model, the problem model is obtained as follows, given task

set G = {N,E}, processor set U = {u1, u2, ..., um}, task

set reliability requirement Rreq , our purpose is to obtain a

scheduling plan according to the scheduling algorithm, to

make the task set meets the reliability requirements, and the

total energy consumption for execution is as low as possible.

minEtotal

Rtotal −Rreq ≥ 0

The scheduling scheme is expressed as planG,U =
{priority, frequency}, priority represents the task node pri-

ority queue, and frequency represents the task node execution

frequency n ×m matrix. According to the equation(7), for a

certain processor, Pind,k, ck, αk, Ps,k are constants, then
∂E(i,k,f)

∂f =

fmax

f
wi,k(ck × αk × fαk−1 − 1

f
(Pind,k + ck × fαk))
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Let the above formula be equal to 0, then,

fee
k = αk

√
Pind,k

(αk − 1)ck
(12)

It can be concluded that when the frequency is lower than

fee
k in the processor uk, the energy consumption increases as

the frequency decreases. Therefore, for uk,

f low
k = max{fee

k , fmin
k } (13)

According to the above problem description and model

assumptions, our scheduling algorithm needs to complete three

things:

• Determine the scheduling priority of task nodes;

• According to the scheduling priority of the task node, the

execution frequency of the task replica on each processor

is determined under the requirement of reliability. If the

frequency is 0, it means that the task has no replica on

this processor;

• Output the scheduling plan and calculate the related

performance of the scheduling plan.

2) Scheduling Rules: The scheduling algorithm proposed in

this paper is a scheduling algorithm based on task replication

that satisfies reliability constraints, so the scheduling process

needs to follow the following rules [16]:

• Task cannot be preempted during execution;

• For each task, there is at most one replica on each

processor;

• When all replica of the task is successfully executed, its

child nodes can start to receive the data of the task.

3) Schedulable Judgment: According to (2), (3), (4), it

can be concluded that the highest reliability value that can

be achieved for a given task set on a heterogeneous multi-

core processor system with given parameters for task-based

replication scheduling is Rtotal max

Rtotal max =
n∏

i=1

(1−
m∏

k=1

(1− r(i, k, fmax
k ))) (14)

That is, each task has a replica that is executed at the highest

frequency on all processors.

When Rtotal max > Rreq , it means that the scheduling of

the task set in the processor system can meet the reliability

goal, otherwise, the reliability goal can’t be met.

IV. ALGORITHM IMPLEMENTATION

A. Task’s Priority Calculation

1) IOD (Input and Output Data) Algorithm Description:
The purpose of this stage is to obtain the priority queue

of task scheduling in the DAG. The tasks enter the next

stage for processing according to the priority queue, and the

replica of each task has the same priority as the task. The

scheduling priority calculation of classic algorithms such as

HEFT[13] generally takes the maximum time required by the

task to the exit node as the rank value, so as to determine the

task priority according to the rank value. In reliability-energy

scheduling, the execution frequency of tasks on each processor

is determined dynamically, so the execution time of tasks

on each processor is also uncertain. The priority calculation

method of classic algorithms is not suitable for the scheduling

model of this paper. This paper proposes a priority calculation

method IOD based on the difference between input and output

data. The maximum input data of task determines the earliest

execution time of the task, and the maximum output data

of task determines the earliest execution time of the child

task. We want the task with the largest difference between

the maximum output data and the maximum input data to be

executed first. This can effectively avoid the waiting of other

tasks. First, the task set represented by the DAG diagram is

layered and scheduled by layer. Within each layer, calculate

the maximum output data of the task, the maximum input data,

and use the difference between the two as the rank value. The

algorithm is as follows,

Algorithm 1 IOD

Input: G = {N,E},W
Output: priority[]
1: for each task τi do
2: level(τi) = max

τj∈succ(τi)
{level(τj)}+ 1;

2: rank(τi) = max{dataoutput − datainput};
4: end for
5: now ←− 1;
6: for each level do
7: sort all tasks in this level by rank(τi);
8: end for
9: for each level do

10: for each task τi in this level do
11: priority[τi]←− now;
12: now ++;
13: end for
14: end for
15: return priority[ ].

For example of task set shown in Figure 1, we can use

the IOD algorithm to get the priority of the task as Ta-

ble 1. Then the order of task scheduling in the case is

τ1, τ4, τ3, τ5, τ2, τ6, τ7, τ9, τ8, τ10.

TABLE I
PRIORITY ALLOCATE

task level max
input

max
output

priority

τ1 1 0 18 1
τ2 2 18 19 5
τ3 2 12 23 3
τ4 2 9 27 2
τ5 2 11 13 4
τ6 2 14 15 6
τ7 3 23 17 7
τ8 3 27 11 9
τ9 3 23 13 8
τ10 4 17 0 10

2) Time complexity of IOD Algorithm: The time complexity

of calculating the level and the out data of each node is O(n+
e), where e is the total number of data connections, that is, the
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total number of elements in the set E. Subsequently, assigning

the priority of each node is equivalent to sorting n nodes,

The time complexity is O(n2), so the total time complexity is

O(n2).

B. Task’s Allocation

The purpose of this stage is to determine the execution

frequency of task replicas on each processor. If the execution

frequency of a certain task on a certain processor is 0, it

means that the task does not have a replica on that processor.

The goal of determining the execution frequency of the task

on each processor is to perform the energy consumption as

low as possible under the constraint of meeting the reliability

requirements. Generally, the task is traversed through each

frequency selection of each processor to obtain a feasible

solution. Adopt different traversal rules, and get different

feasible solutions.

1) Traversal Rules: We propose the following three traver-

sal rules:

• R: based on the purpose of first meeting reliability

requirements, propose the traversal frequency selection

in ascending order based on task reliability.

• S: based on the relationship between reliability and en-

ergy consumption, it is proposed to traverse the frequency

in ascending order according to the ratio s of energy

consumption and reliability, and S = E
R .

• Q: based on the interrelationship between reliability and

energy consumption, referring to the [37], it is pro-

posed to traverse the frequency according, and Q =
− E

log10 (1−R) .

2) Algorithm Description: The algorithm of the task allo-

cation stage is divided into three steps, as shown below:

1 Take out the taskτi at the head of the queue from the

priority queue, and calculate the reliability requirement

rreq(τi) of the task by equation(6).

2 Follow the Traversal Rules to traverse the frequency

selection of the task on each processor until the rreq(τi) is

met. If the highest frequency traversed to each processor

still cannot meet the task reliability requirements, it will

jump out of the loop and report the scheduling failure.

3 Output the processing frequency of the task on each

processor, and delete the task node from the priority

queue. If there is no task in the priority queue, end the

task allocation phase, otherwise return to step 1.

According to the above rules, the algorithm of the task

allocation stage can be expressed as algorithm 2, where the

X could be R, S or Q according to different traversal rules.

3) Example: The various parameters of the processor are

given as Table 2, and the tasks in Figure 1 can be scheduled

for demonstration according to the following parameters.

For the task set in Figure 1, taking task τ1 as an example of

IOD algorithm and choosing traversal rules S (It can be called

IODS algorithm), the algorithm has the following process,

calculate rreq(1) =
10
√
0.95 ≈ 0.994884, the traversal process

of frequency is as follows Table 3.

Algorithm 2 Task’s Allocation

Input: G = {N,E},W,U,Rreq

Output: frequency[ ][ ]
1: for each task τi (by the priority base on rank) do
2: ractual(i)←− 0;

3: f temp
k ←− f low

k ;
4: calculate rreq(i);
5: while ractual(i) ≤ rreq(i) do
6: for each processor uk do
7: find f temp

min with min{X};

8: frequency[i][min]←− f temp
min ;

9: f temp
min ←− f temp

min + 0.01;
10: calculate ractual(i);
11: end for
12: end while
13: end for
14: return frequency[ ][ ].

TABLE II
PROCESSOR’S PARAMETERS

Processor parameters

Pind,k Ps,k dk αk ck λk f low fmax

u1 0.03 0.005 2.0 2.9 0.8 0.0002 0.2583 1
u2 0.03 0.005 2.0 2.9 0.9 0.00013 0.2480 1
u3 0.03 0.005 2.0 3.0 1.0 0.0005 0.2466 1

First calculate the value of fee
k , f temp

1 = fee
1 = 0.2583,

f temp
2 = fee

2 = 0.2480, f temp
3 = fee

3 = 0.2466, and then use

f temp
k calculate the S of task τ1 on each processor, we found

that the value of S3 is smallest ( IODR is to find biggest R,

IODQ is to find smallest Q ), so let f1,3 = 0.2466 and let

f temp
3 = 0.2566, continue the calculation in the previous step

until the reliability requirements are met.

As result, f1,1 = 0.4283, f1,2 = 0, f1,3 = 0.5666,

ractual(1) = 0.9951 and Eactual(1) = 6.5832.

According to the above steps, using IOD algorithm and

choosing the traversal rules as S (It can be called IODS

algorithm) we can get the result of all tasks shown in Table

4.

Similarly, we can also get the results of other algorithms as

shown in the Table 5. From the table, the energy consumption

of IODS algorithm is lowest, and the scheduling length of

HRRM algorithm is shortest. But this is just the result of an

example, for evaluating the performance of all algorithms, we

need to design complex experiments.

4) Time complexity IODX Algorithm:
• The time complexity of schedulability is O(n×m);
• The time complexity of selecting the execution frequency

of the task on each processor is O(n ×m × l), l is the

max number of frequency chooses of each processor;

Therefore, the total time complexity is O(n×m× l).

V. EXPERIMENT

In the previous part of this paper, we proposed an algorithm

IOD for calculating task priority and three traversal rules,

which can be combined to obtain three heuristic scheduling
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TABLE III
FREQUENCY CHOOSING

u1 u2 u3 ractual rreq

f temp
k 0.2583 0.2480 0.2466

s 3.4514 3.8598 2.9508 0.5565 0.994884
fi,k 0 0 0.2466

f temp
k 0.2583 0.2480 0.2566

s 3.4514 3.8598 2.8165 0.5840 0.994884
fi,k 0 0 0.2566

... ...

f temp
k 0.2583 0.2480 0.5466

s 3.4514 3.8598 3.4017 0.9357 0.994884
fi,k 0 0 0.5466

f temp
k 0.2583 0.2480 0.5566

s 3.4514 3.8598 3.4839 0.9819 0.994884
fi,k 0.2583 0 0.5466

... ...

f temp
k 0.4283 0.2480 0.5666

s 3.5234 3.8598 3.5686 0.9948 0.994884
fi,k 0.4283 0 0.5566

f temp
k 0.4383 0.2480 0.5666

s 3.5869 3.8598 3.5686 0.9951 0.994884
fi,k 0.4283 0 0.5666

TABLE IV
IODS ALGORITHM’S SCHEDULING RESULT

IODS

task u1 u2 u3 rreq ractual Eactual

τ1 0.4283 0.0000 0.5666 0.994884 0.995066 6.58320

τ4 0.2683 0.5980 0.0000 0.994702 0.997298 5.41979

τ3 0.4783 0.2780 0.0000 0.992294 0.992298 5.28806

τ5 0.4483 0.3780 0.0000 0.994880 0.995049 5.76829

τ2 0.6183 0.2780 0.0000 0.994714 0.994730 8.35525

τ6 0.4483 0.0000 0.5366 0.994868 0.995149 6.22966

τ7 0.7583 0.2580 0.0000 0.994603 0.998848 6.36078

τ9 0.2683 0.6180 0.0000 0.990656 0.995302 8.10623

τ8 0.6183 0.0000 0.0000 0.990240 0.990665 1.84721

τ10 0.0000 0.6980 0.0000 0.994457 0.994777 3.48296

Rtotal = 0.9503, Etotal = 57.44 + 2.92 = 60.36, SLR = 286.3476

algorithms IODS, IODR and IODQ. All three algorithms

can solve the scheduling problem proposed in this paper. In

order to find out which algorithm has the better performance,

this section tests the performance of the algorithm through

simulation experiments. And in order to make the experimental

results more objective, we introduced the EFSRG algorithm

and HRRM algorithm as the reference group in the experiment.

A. Comparative experiment based on FFT and GE

• FFT, Fast Fourier Transform is an efficient algorithm for

calculating discrete Fourier Transform in a computer. The

TABLE V
ALGORITHMS’ SCHEDULING RESULT

Algorithm Eactual ractual SL

IODS 57.44+2.92=60.36 0.9503 286.35

IODQ 63.29+1.31=64.60 0.9502 141.62

IODR 68.51+1.14=69.65 0.9502 124.00

EFSRG 61.06+3.75=64.81 0.9503 316.22

HRRM 106.68+1.14=107.82 0.9842 123.00

calculation of N is as follows, ρ is used as the size

parameter of the Fast Fourier Transform application.

N = (2× 2ρ − 1) + 2ρ × log(2ρ)

= (2 + ρ)× 2ρ − 1, ρ ∈ Z+

• GE Gaussian Elimination method is mainly used to solve

linear equations, it can also find the rank of matrix and

the inverse of matrix. It is an important algorithm in

linear algebraic programming. The calculation of N is

as follows, ρ is used as the matrix size parameter of the

Gaussian Elimination application.

N = (ρ2 + ρ− 2)/2, ρ ∈ Z+

The parameter settings of processor and application set

refer to the existing literature as follows: 10ms ≤ wi,k ≤
100ms, 10ms ≤ ei,k ≤ 100ms, 0.03 ≤ Pind,k ≤ 0.07,

1 ≤ dk ≤ 3, 0.8 ≤ ck ≤ 1.2, 2.5 ≤ αk ≤ 3.0, fmax
k = 1,

0.00001 ≤ λk ≤ 0.0001. We simulated a heterogeneous

system with 8 processors. The frequency of each processor

can be dynamically adjusted and the precision is 0.01.

Experiment 1 Compare the scheduling results of IODS,

IODR, IODQ, EFSRG and HRRM algorithms for the FFT

application DAG task set when ρ is equal to 4, 5, 6, 7 (the

number of nodes N is 95, 223, 511, 1151), the scheduling

results are reflected in the energy consumption with the given

task set reliability goal (reliability requirements from 0.90

to 0.99, step size 0.01). For each node’s number, randomly

generate 100 FFT task sets, and compare the average energy

consumption of various algorithms for scheduling task sets

with various reliability goal, and the result is shown in the

figure 2.

Experiment 2 Compare the scheduling results of IODS,

IODR, IODQ, EFSRG and HRRM algorithms for the GE

application DAG task set when ρ is equal to 13, 21, 32,

48 (corresponding to the number of nodes N is 90, 230,

527, 1175), the scheduling results are reflected in the energy

consumption with the given task set reliability goal (reliability

requirements from 0.90 to 0.99,step size 0.01). For each node’s

number, randomly generate 100 GE task sets, and compare

the average energy consumption of various algorithms for

scheduling task sets with various reliability goal, and the result

is shown in the figure 3.
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(a) n = 95 (b) n = 223

(c) n = 511 (d) n = 1151

Fig. 2. energy consumption of FFT task sets under different reliability goal

Analyzing the results of the experiment 1 and experiment

2 shows that: to schedule GE or FFT task sets with different

numbers of nodes under the constraints of satisfying reliability

requirements, the scheduling energy consumption of the IODS

scheduling algorithm is smaller.

(a) n = 90 (b) n = 230

(c) n = 527 (d) n = 1175

Fig. 3. energy consumption of GE task sets under different reliability goal

B. Comparative experiment based on random tasks

The random generation task set refers to the parameter

setting method used in the paper of Topcuolu HR [21] [38],

number of tasks in the graph n = 100, 300, 500, 1000, range

percentage of computation cost on processor h = 0.75, shape

parameter of the graph ε = 2, communication to computation

ratio CCR = 5.

Experiment 3 Compare the scheduling results of IODS,

IODR, IODQ, EFSRG and HRRM algorithms for the random

DAG task set when n is equal to 100, 300, 500, 1000.

Same with FFT and GE, for each node’s number, randomly

generate 100 random task sets, and compare the average

energy consumption of various algorithms for scheduling task

sets with various reliability goal, and the result is shown in

the figure 4.

(a) n = 100 (b) n = 300

(c) n = 500 (d) n = 1000

Fig. 4. energy consumption of random task sets under different reliability
goal

Experiment 4 Compare the scheduling results of the

IODS, IODR, IODQ, EFSRG and HRRM algorithms for

random DAG task sets with n being 300, 1000, given the

reliability requirement of the task set is 0.95, compare the

scheduling length under different number of nodes. For each

n, 100 task sets are randomly generated, then calculated the

average scheduling length of the 100 task sets. The results are

shown in the figure 5.

(a) n = 300 (b) n = 1000

Fig. 5. scheduling length of different reliability goal

Analyzing the results of the experiment 3 and experiment

4 shows that: scheduling randomly generated task sets with

different numbers of nodes under the constraints of satisfying

reliability requirements. The scheduling energy consumption

of the IODS scheduling algorithm is smaller. The scheduling

length of the HRRM scheduling algorithm is smaller, but its

energy consumption cost is high. In general, both IODS and

IODQ are good choices. IODS has better energy-saving ef-

fects, and the scheduling length of IODQ is shorter. According
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to the requirements of the problem formulation of this paper,

so IODS is the best choice.

VI. CONCLUSIONS

In this paper, we focus on the scheduling of parallel appli-

cation in heterogeneous embedded systems, we proposed an

energy-saving scheduling algorithm that satisfies the reliability

goal of task sets. The algorithm is based on task replication

technology and DVFS technology to adjust the reliability

and energy consumption of tasks, both considered energy

consumption and reliability.

Our work is divided into two parts. In the task priority

calculation phase, we proposes a priority calculation algorithm

IOD based on the difference in task data input and output.

In the task allocation stage, we proposes a task allocation

algorithm based on fault-tolerant technology of task replication

and DVFS technology. Combining the two phase, we get three

scheduling algorithms IODS, IODQ and IODR.

Through the comparative experiments of EFSRG algorithm,

HRRM algorithm, IODS algorithm, IODQ algorithm and

IODR algorithm we find that the IODS is a better choice to

solve the DAG task set scheduling problem with reliability

requirements in heterogeneous embedded systems.
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