
Co-designing the Topology/Algorithm to Accelerate
Distributed Training

Xiang Hou, Rui Xu, Sheng Ma, Qiong Wang, Wei Jiang, Hongyi Lu
Science and Technology on Parallel and Distributed Processing Laboratory, College of Computer

National University of Defense Technology
Changsha, China

{houxiang, xurui16a, masheng, wangqiong, jiangwei, hylu}@nudt.edu.cn

Abstract—With the development of Deep Learning (DL), Deep
Neural Network (DNN) models have become more complex.
At the same time, the development of the Internet makes it
easy to obtain large data sets for DL training. Large-scale
model parameters and training data enhance the level of AI by
improving the accuracy of DNN models. But on the other hand,
they also present more severe challenges to the hardware training
platform because training a large model needs a lot of computing
and memory resources that can easily exceed the capacity of
a single processor. In this context, integrating more processors
on a hierarchical system to conduct distributed training is a
direction for the development of training platforms. In distributed
training, collective communication operations (including all-to-
all, all-reduce, and all-gather) take up a lot of training time,
making the interconnection network between computing nodes
one of the most critical factors affecting the system performance.
The hierarchical torus topology, combined with the Ring All-
Reduce collective communication algorithm, is one of the current
mainstream distributed interconnection networks. However, we
believe that its communication performance is not the best. In
this work, we first designed a new intra-package communication
topology, i.e. the switch-based fully connected topology, which
shortens the time consumed by cross-node communication. Then,
considering the characteristics of this topology, we carefully
devised more efficient all-reduce and all-gather communication
algorithms. Finally, combined with the torus topology, we imple-
mented a novel distributed DL training platform. Compared with
the hierarchical torus, our platform improves communication
efficiency and provides 1.16-2.68 times speedup in distributed
training of DNN models.

Index Terms—topology, hardware training platform, dis-
tributed training, collective communication

I. INTRODUCTION

Today, AI profoundly affects our daily lives, playing an

inestimable role in a wide range of applications such as

robotics, language recognition [9] and image recognition [13],

[28], [34]. The DNN model is one of the most important

methods to realize AI. To quickly training DNN models, ar-

chitecture researchers constantly seek to invent more effective

accelerators, e.g. GPU [16], TPU, FPGA, etc. In recent years,

with the rapid development of the Internet, large data sets for

DL training can be easily obtained. For example, the ImageNet

[10] data set used for object recognition training contains about

This work is supported in part by the Science and Technology Innovation
project of Hunan Province No. 2018RS3083, in part by the National Key
Research and Development Project No. 2018YFB0204301. Sheng Ma and
Qiong Wang are the corresponding authors.

1.28 million images. At the same time, to improve the ability

of DL, the number of neural network layers has increased from

the original 5 layers to hundreds of layers today. The growth

of the data set size and the network layers make the training

process of DL consume a lot of memory and computing

resources. In this context, the continuous use of a single

accelerator for training faces the problem of low efficiency,

which is far from the needs of academia and industry.

N
P
U

N
M
U

NN
PP
UU

NN
MM
UU

H
B
M

G
P
U

N
I
C

H
B
M

G
P
U

N
I
C

N
I
C

G
P
U

H
B
M

N
I
C

H
B
M

Inter-package links

Intra-package links

NAP

NAM

G
P
U

Fig. 1. Distributed DL hardware training platform

Using distributed DL training platforms to assign training

tasks on multiple processors is a way to improve the speed

of DNN training. The distributed platform divides data and

models into multiple processors and performs training tasks

together, which greatly reduces the memory and computing

ability requirements of a single processor. Moreover, through

the cooperation training of all processors, the time required to

train the DNN model will be greatly shortened.
Figure 1 shows the architecture of a typical distributed

platform [11], [17], which is a hierarchical structure composed

of multiple Neural Accelerator Packages (NAP) [24]. And each

NAP integrates with multiple Neural Accelerator Modules

(NAM), which consists of a computing node, a high-bandwidth

memory (e.g. HBM) module, and a dedicated network inter-

face card. Among them, the HBM module is used to store

DNN models and training data, the computing node performs

matrix multiplication and addition operations in DNN training,

1010

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00141

1 2

34

1 2

34

1 2

34

1 2

34

Intra-package links Inter-package links
Computing node NAP

Fig. 2. The hierarchical torus topology. For inter-package links, the figure
only shows the connections between all nodes labeled 1 in different NAPs.

and the NIC is responsible for communication operations.

Besides, the hierarchical interconnection network topology

comprises the high bandwidth intra-package links (e.g. PCI-E)

for NAM-to-NAM communication and the inter-package links

(e.g. Ethernet [3]) for NAP-to-NAP communication [24]. In

this distributed training system, data communication between

computing nodes consumes a lot of training time. Therefore, to

improve system efficiency, it is necessary to study the structure

of the hierarchical topology.

In this work, by optimizing the hierarchical torus topology

(Figure 2) [24], we present a novel interconnection network

of distributed DL training platform. In the hierarchical torus

topology, the local dimension is a ring structure, which is

not friendly to cross-node communication. Therefore, the

deployment of a fully connected structure is what we expect.

Furthermore, in the Ring All-Reduce [19] collective communi-

cation algorithm, the feature that there is only communication

between adjacent nodes makes it possible to achieve good

performance in a ring topology. However, the algorithm cannot

make full use of the links in the fully connected topology.

Therefore, designing more efficient all-reduce and all-gather

collective communication algorithms is the second focus of

the research.

Specifically, by i) modifying the intra-package communica-

tion topology of the hierarchical torus, and ii) designing unique

collective communication algorithms for the new topology,

we improve the communication efficiency between nodes in

the distributed platform, and finally, accelerate the training

of the DNN models. In particular, we make the following

contributions:

• For the intra-package interconnection structure of the

distributed platform, we propose the switch-based fully

connected topology, that is, by using a few local-switches

to connect computing nodes, which significantly im-

proves the speed of the cross-node communication.

• We propose more efficient all-reduce and all-gather col-

lective communication algorithms. The communication

involved in these two algorithms can make full use of

the links provided by the fully connected topology, which

reduces the steps and time of communication compared

to the Ring All-Reduce algorithm.

• On our proposed platform, we simulate the distributed

training of three DNN models. And the results prove

that our work builds an efficient distributed DL training

system. Compared with the hierarchical torus, it greatly

improves the speed of training.

The rest of the paper is organized as follows. In Section

II, we introduce some background and works related to the

distributed training and collective communication algorithms.

Section III describes our proposed distributed DL hardware

training platform. The experimental method used to evaluate

the platform and the results are described in Section IV and

Section V, respectively. Finally, we conclude the paper in

Section VI.

II. BACKGROUND AND RELATED WORK

A. Distributed Training

In order to cope with the challenges brought by the surge

in model parameters and training data, researchers have begun

to conduct distributed training on multi-processor platforms.

Distributed training refers to splitting the DNN model and/or

training data among multiple processors to reduce the compu-

tational pressure of each processor.

When multiple processing nodes are used to perform train-

ing tasks in parallel, there are two ways to update the weights

of the model, i.e. asynchronous [4], [36], [37] and synchronous

[5], [8], [27], [35]. Asynchronous updates are usually used in

the parameter server framework. In which, the training data is

distributed over worker nodes, and the server node is responsi-

ble for collecting the gradient of some nodes and updating their

model through the reduction operation [15]. Asynchronous

updates will generate the stale gradients [5], i.e. the model

may have been updated while a worker is computing its

local gradient, which reduces the training accuracy. Therefore,

the current mainstream researches adopt synchronous updates.

That is, each node, firstly, generates a local gradient through

calculation and then reduces the local gradient on all nodes.

Lastly, before the start of the next iteration, each node updates

its model parameters at the same time. To ensure training

accuracy, our work is also based on synchronous updates.

The main parallel strategies currently used are: data par-

allelism [1], [14], [30], [33], model parallelism [6], [13]

and hybrid parallelism [12], [32]. In data parallelism, the

training data is first segmented and allocated to different

computing nodes (each node has a complete DNN model)

for training to generate the local gradient. Then the local

gradients of multiple nodes are communicated to generate the

final gradient, and finally, the weights are updated [26]. In

model parallelism, the DNN model is segmented and assigned

to different nodes (each node will process all training data).

Due to the segmentation of the DNN model, communication

between multiple nodes is also required to generate the final

1011

Node 0 Node 1 Node 2 Node 3

X0 X1 X2 X3

Node 0 Node 1 Node 2 Node 3

X0 X0 X0 X0

X1 X1 X1 X1

X2 X2 X2 X2

X3 X3 X3 X3

(a) All-gather

Node 0 Node 1 Node 2 Node 3
1X 2X 3X0X

Node 0 Node 1 Node 2 Node 3
i

iX
i

iX
i

iX i
iX

(b) All-reduce

Node 0 Node 1 Node 2 Node 3
1

0X
2

0X
3

0X

1
1X

1
1X

3
1X

1
2X

2
2X

3
2X

1
3X 1

3X
3

3X

0
0X
0

1X

0
2X
0

3X

1
0X

2
0X

1
1X

1
1X

1
2X

2
2X

1
3X 2

3X

0
0X
0

1X

0
2X

1
1X

1
2X
1

3X

0
0X
0

1X

0
2X

1
0X

1
2X
1

3X

0
0X
0

1X

0
2X

1
1X

2
1X

1
0X

1
2X

1
3X

0
0X
0

1X

0
2X

0
0X
0

1X
0

2X

1
1X
1

2X

1
3X

Node 0 Node 1 Node 2 Node 3
0

0X

1
0X

2
0X

3
0X

0
1X

1
1X

2
1X

3
1X

0
2X
1

2X
2

2X

3
2X

0
3X

1
3X

2
3X

3
3X

(c) All-to-all

Fig. 3. Collective communication operations in distributed training

gradient and update the weights. In hybrid parallelism, all

nodes are divided into different groups, and different parallel

strategies are used within or between groups.

B. Collective Communication Operations

To realize distributed training on the hardware platform,

the communication of three types of data, i.e. activations,

input gradients, weight gradients, between different nodes

is inseparable in the three stages of training, i.e. forward

propagation (FP), backward propagation (BP), weight update

(WU). And the communication of the data is completed by

collective communication operations. Collective communica-

tion refers to multiple nodes simultaneously communicating

data and performing specific operations [24]. Our work will

cover all three kinds of operations in distributed training,

i.e. all-gather, all-reduce, all-to-all. And Figure 3 uses four

Node0 Node1Send

Receive Send

Send Receive

Receive

Receive

Send

Node2Node3

Fig. 4. Logical structure of the Ring All-Reduce algorithm

nodes as an example to show the initial and final states of the

communication.

In distributed training of DNN, all-gather (Figure 3(a))

and all-reduce (Figure 3(b)) are the most common collective

communication operations. Specifically, through all-gather,

each node will eventually get the data of any other node. In

model parallelism, the communication of activations in the

FP process is completed by all-gather. All-reduce is similar

to all-gather. But after getting the data, it will perform the

reduction operation. Therefore, the all-reduce operation is

usually performed in the WU phase of data parallelism. At

present, the Ring All-Reduce [19] is the most popular all-

reduce algorithm. Figure 4 graphically depicts the basic logical

structure of the algorithm. In this algorithm, each node can

only receive data from the previous node and send data to the

next node, which logically forms a ring. Although the Ring

All-Reduce algorithm can be applied to any physical topology

without any modification, in some cases, e.g. fully connected

topology, the link utilization rate of this algorithm is extremely

low.

In terms of the all-to-all operation, each node needs to send

different parts of the data to other nodes. When using model

parallelism to train the embedding layer of DLRM [18], the

all-to-all operation is indispensable in the FP and BP stages.

Figure 5 shows the most widely used all-to-all communication

algorithm described in [24], which is composed of N−1 steps

(N is the number of computing nodes). The data of each node

is divided into N messages. During the ith step, the node

sends data to the node with the distance of i and receives

data from the node with the distance of i. We can see that

this algorithm involves communication between non-adjacent

nodes (e.g. Figure 5(c)). However, in the hierarchical torus

topology (Figure 2), the structure of the local dimension is

a ring (solid red lines), which is not friendly to cross-node

communication. Therefore, we need to study a topology that

allows direct communication between arbitrary nodes.

C. Related Work

With the increasing complexity of DNN models and the

continuous emergence of training data, researchers are increas-

ingly exploring the distributed training platforms. Based on the

GARNET network simulator [2], the authors in [24] released a

1012

Node 0 Node 1

Node 3 Node 2

0
3

0
2

0
1

0
0 ,,, XXXX 1

3
1

2
1

1
1

0 ,,, XXXX

2
3

2
2

2
1

2
0 ,,, XXXX3

3
3

2
3

1
3

0 ,,, XXXX

(a)

Node 0 Node 1

Node 3 Node 2

0
1X

1
2X

3
0X

2
3X

1
3

1
2

1
1

1
0 ,,, XXXX

2
3

2
2

2
1

2
0 ,,, XXXX3

3
3

2
3

1
3

0 ,,, XXXX

0
1X

1
2X

2
3X

0
3

0
2

0
1

0
0 ,,, XXXX 3

0X

(b)

Node 0 Node 1

Node 3 Node 2

3
1X

0
2X

2
0X

1
3X

0
3

0
2

3
0

0
0 ,,, XXXX 1

3
0

1
1

1
1

0 ,,, XXXX

1
2

2
2

2
1

2
0 ,,, XXXX3

3
3

2
3

1
2

3 ,,, XXXX 0
2X

2
0X

1
3X

3
1X

(c)

Node 0 Node 1

Node 3 Node 2

2
1X

3
2X

1
0X

0
3X

0
3

2
0

3
0

0
0 ,,, XXXX 3

1
0

1
1

1
1

0 ,,, XXXX

1
2

2
2

2
1

0
2 ,,, XXXX3

3
3

2
1

3
2

3 ,,, XXXX

1
0X

0
3X 3

2X

2
1X

(d)

Fig. 5. All-to-all collective communication algorithm

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Intra-package links Inter-package links
Computing node Local-switch NAP

Fig. 6. Proposed distributed DL training topology

distributed training platform simulator that can collaboratively

design collective communication algorithms and topologies,

and conducted in-depth research on the intra-package net-

works. And the authors in [22] connected the ASTRA-sim

DNN training simulator [24] and the NS3 simulator [25] to

supply a facility that can analyze the inter-package networks.

However, these two works only focus on the hierarchical torus

and alltoall topologies. Although these two topologies have

high scalability, the training efficiency is not the best.

In addition, to improve the speed of all-reduce operations,

the authors in [20] optimized the Ring All-Reduce algorithm

based on tree topology. And to increase the utilization of the

high bandwidth provided by intra-package links, the authors

in [23] proposed the Accelerator Collectives Engine (ACE)

microarchitecture. By embedding the ACE into the NIC, the

distributed training speed is greatly accelerated. However, all

the above works use the Ring All-Reduce algorithm or its

variants, which is not suitable for the fully connected topology

we proposed. The authors in [31] proposed the Recursive

Doubling algorithm to improve the collective communication

operation of short or medium-sized messages (< 512KB),

but this algorithm is not suitable for long messages, and

its efficiency is not even as good as the ring algorithm

[31]. Therefore, by comparison, the collective communication

algorithm we proposed is suitable for distributed training of

DNN models of any scale.

III. PROPOSED DISTRIBUTED DL TRAINING PLATFORM

A. Proposed Topology

As mentioned in Section II-B, the all-to-all collective com-

munication algorithm requires direct communication between

any nodes. Taking N nodes as an example, based on the fully

connected topology, the communication can be completed

quickly within N − 1 steps. However, if a unidirectional ring

topology is used, the steps will be greatly increased, i.e. from

N − 1 to
N×(N−1)

2 . Therefore, we need to present a more

suitable topology other than the unidirectional ring topology.

1) Overview: Figure 6 demonstrates the proposed dis-

tributed DL training topology. In the intra-package topology,

we use the switch-based fully connected topology to inter-

connect local computing nodes through high bandwidth intra-

package links and some local-switches. Intuitively, compared

to the ring topology, this topology provides a direct data

path between any nodes. The experimental results described

in Section V-A prove that our topology greatly improves the

speed of all-to-all communication.

In the inter-package topology, we use the torus topology as

the existing work [7]. As depicted in Figure 6, the computing

nodes with the same ID in different NAMs are connected by

inter-package links, and these lines form bidirectional rings

in the horizontal and vertical dimensions [24]. This part of

the topology will be the focus of our next phase of research.

Overall, we propose a hierarchical topology for distributed

training platforms.

2) Local-switch: To reduce the time consumed by all-to-

all collective communication operations, the physical links

for direct communication between all nodes within a NAP

are expected. So, the naive fully connected topology is one

of our choices. However, as the number of nodes increases,

the on-chip resources occupied by this structure will increase

exponentially, which not only wastes precious on-chip space

but also has poor scalability. Besides, in each step of the

collective communication operations, each node only needs to

communicate with at most two nodes, which makes the link

utilization rate of naive fully connected topology extremely

low. Considering these shortcomings, we propose to use the

local-switch to achieve full connectivity between nodes.

1013

Node 0 Node 1

Node 3 Node 2

0X 1X

2X3X

(a)

Node 0 Node 1

Node 3 Node 2

0X

1X

3X

2X

30 XX 01 XX

12 XX23 XX

3X 0X

1X2X

(b)

Node 0 Node 1

Node 3 Node 2

1230 XXXX

30 XX

12 XX

01 XX

23 XX

2301 XXXX

0123 XXXX 3012 XXXX

12 XX

30 XX

23 XX

01 XX

(c)

Fig. 7. Proposed all-reduce algorithm

Node 0 Node 1

Node 3 Node 2

0X 1X

2X3X

(a)

Node 0 Node 1

Node 3 Node 2

0X

1X

3X

2X

30 XX 01 XX

12 XX23 XX

3X 0X

1X2X

(b)

Node 0 Node 1

Node 3 Node 2

1,2,3,0 XXXX

30 XX

1,2 XX

0,1 XX

23 XX

2,3,0,1 XXXX

0,1,2,3 XXXX 3,0,1,2 XXXX

1,2 XX 2,3 XX

0,1 XX 3,0 XX

(c)

Fig. 8. Proposed all-gather algorithm

In our topology, the local-switch is a high-bandwidth switch

used for intra-package communication. Each of them has a

certain number of high-bandwidth link ports and a N × N
fully connected crossbar used to provide a direct data path

between different computing nodes. For example, in Figure

6, through a four-port local switch, any two nodes within a

NAP can communicate directly through one hop, i.e. using

a local-switch can already provide fully connected features.

Even so, if all communication operations between nodes are

completed through one local-witch, it will cause congestion

in the network and cannot bring the expected performance

improvement.
In order to maximize the acceleration of collective commu-

nication operations, it is desirable to use N local-switches

in the NAP containing N nodes, to ensure that in each

communication step, there is an idle local-switch between

any two nodes that need to communicate. However, if too

many local-switches are used, a lot of power and area will

be consumed. This forces us to make a trade-off between

performance and consumption. We will analyze this issue in

detail in the experimental section.

B. Proposed Collective Communication Algorithms
The topology proposed in Section III-A, different from the

ring structure, provides an opportunity for direct data exchange

between any computing nodes within a NAP. However, in the

Ring All-Reduce algorithm, there is no such communication.

To take advantage of these fully connected links, we design

new all-reduce and all-gather collective communication algo-

rithms. Figures 7 and 8 respectively describe the steps of these

two algorithms in the case of N nodes (here N = 4).
1) All-reduce: As shown in Figure 7, the all-reduce op-

eration takes log2 N steps. During the first step, node i
sends data X(i) (yellow part) to the neighboring node and

receives corresponding data from its previous node. After

communication, it adds the received data with its local data

(Figure 7(b)). Then, during the Sth step (S is greater than or

equal to 2), the node i sends its data to the (i+ 2× (S − 1))
mod N node and receives corresponding data.

2) All-gather: Figure 8 shows that the all-gather operation

also takes log2 N steps. However, it does not contain any local

reduction operations. During the Sth step, each node only

needs to send all its data to the receiving node.

3) Analysis: Compared with the Ring All-Reduce algo-

rithm, our proposed algorithm does not need to divide the data

owned by each node and allows directly one-hop communica-

tion between any nodes, e.g. node 0 to node 2. Therefore, com-

bined with the fully connected topology proposed in Section

III-A, our algorithm significantly reduces the communication

steps.

C. Summary of All Communications on the Proposed Platform

During the training process, all communications between

computing nodes will be carried out in the order of local,

vertical and horizontal dimensions. The data of each com-

munication contains all the data required by the intermediate

nodes and the final node. In the local dimension, data is

communicated according to the steps of the algorithm pro-

posed in Section III(B). In horizontal and vertical dimensions,

the platform executes the collective communication algorithms

according to the [19], i.e. the Ring All-Reduce algorithm. In

all dimensions, when all-to-all communication operations are

required, the algorithm process introduced in Section II-B is

the flow of data.

In summary, through the co-design of topology and collec-

tive communication algorithm, we optimize the intra-package

interconnection network of the hierarchical torus topology and

construct a distributed DL training platform that can efficiently

train complex DNN models.

TABLE I
WORKLOADS

Number Workload layers Parallel strategy Collective communication operation
1 MicroAllReduce (512KB, 1MB, 2MB, 4MB) 1 None All-reduce
2 MicroAllToAll (1MB) 1 None All-to-all
3 DLRM Hybrid Parallel 8 Hybrid All-to-all + All-reduce
4 MLP ModelParallel 6 Model All-gather + All-reduce
5 MLP HybridParallel Data Model 6 Hybrid All-gather + All-reduce

IV. EXPERIMENTAL METHODOLOGY

A. Experimental Tools

We use the following tools to explore the platforms pro-

posed in this paper:

TABLE II
SIMULATION CONFIGURATIONS

ValueParameter
Proposed platform Hierarchical torus

Number of nodes within a NAP 4 or 8
Number of NAPs 1 or 4

Numbers of local-switches within a NAP 1 to N None
VC/VNET 2

Buffers per VC 5000
Intra-package link width 512bits/ns
Inter-package link width 256bits/ns

Router latency 5ns
Intra-package link latency 90ns
Inter-package link latency 200ns

Cycle period 1ns

1014

49.728

66.890

33.626

23.650
16.994

24.960 25.274

12.818
9.156 6.590

0

10

20

30

40

50

60

70

Ring 1 2 3 4

C
om

m
un

ic
at

io
n

Ti
m

e
(u

s)

Topology

MicroAllReduce (1MB) MicroAllToAll (1MB)

(a)

53.258

100.154

50.254

35.238
25.31 22.828 22.766 22.762

12.836

57.984

29.42

14.888 10.71 7.622 6.970 6.954 6.94 3.992

0

20

40

60

80

100

120

Ring 1 2 3 4 5 6 7 8

C
om

m
un

ic
at

io
n

Ti
m

e
 (u

s)

Topology

MicroAllReduce (1MB) MicroAllToAll (1MB)

(b)

Fig. 9. The time of all-to-all and all-reduce collective communication operations in different topologies with 4 NAMs (a) or 8 NAMs (b).

0.000

50.000

100.000

150.000

200.000

250.000

512KB 1MB 2MB 4MB

C
om

m
un

ic
at

io
n

Ti
m

e
(u

s)

Communication data volume

4 NAMs r ing 4 NAMs alltoall with 3 local-switches
8 NAMs r ing 8 NAMs alltoall with 4 local-switches

Fig. 10. The communication time required to complete the all-reduce
operation with different communication data sizes

1) Performance Evaluation Tool: The ASTRA-sim [24] is a

distributed DL training platform simulator. The simulator can

simulate cycle-level communication behavior for the parallel

strategies including data parallelism, model parallelism, and

hybrid parallelism. We modify it to support our proposed hi-

erarchical topology and collective communication algorithms.

2) Area and Power Consumption Evaluation Tool: DSENT

is a widely used network-level modeling framework for elec-

tronic NoC, with integrated timing, area, and power models,

and these models are accurate in the deep sub-100 nm regime

[29]. So, we use DSENT to evaluate the power and area of

different topology settings in this work.

B. Experimental Parameters

1) Workloads: The workloads used in the experiments are

given in Table I. The first two workloads have only one layer

and are used to only analyze the all-to-all and all-reduce

collective communication algorithms (the data in brackets

indicates the size of the communication data volume). The

remaining three workloads are complete DNN models to study

all three parallel strategies and three collective communication

operations mentioned above.

The workload, in addition to the network model, also

includes the calculation time and the amount of data transfer

required for each layer of the neural network calculated

based on some data sets using an DNN accelerator simulator

[21]. In the third workload, the embedding layer uses model

parallelism (due to a large number of model parameters), and

the remaining 7 layers (conventional MLP layer) use data

parallelism. In the fifth workload, the data parallelism is used

across NAPs, and the model parallelism is used across nodes

within a NAP.

2) Simulated Hardware distributed platform configurations:
In this work, we respectively apply our proposed platform

and the hierarchical torus to explore the performance of

distributed training of the DNN models. Table II shows the

main simulation configurations of the platforms, routers, and

links. The number N in the Numbers of local-switches within a
NAP row indicates how many computing nodes are in a NAP.

In the Number of NAPs row, the platform composed of one

NAP is mainly used to study the efficiency of all-to-all and all-

reduce collective communication algorithms. And four NAPs

are used to compare the training time of the three complete

DNN models.

V. RESULTS

The content of this section is arranged as follows. In Section

V-A, we compare the speed of the collective communication

operations in the switch-based fully connected topology and

the ring topology. And we analyze the trade-offs between

performance and power consumption when using different

numbers of local-switches in a fully connected topology. In

Section V-B, we use three complete DNN models to evaluate

our distributed DL training platform. Lastly, we use DSENT

to measure the hardware overhead of the platforms in Section

V-C.

A. Switch-based Fully Connected Topology vs. Ring Topology
for All-to-all and All-reduce Operations

To verify the effect of our proposed topology and all-

reduce algorithm on accelerating the collective communication

operations, we conduct experiments on the platform composed

of 1 NAP with 4 or 8 NAMs. The workloads are MicroAllRe-
duce (1MB) and MicroAllToAll (1MB), and each experiment

includes only one iteration for simplicity. Also, to analyze the

impact of the number of local-switches on the performance of

the fully connected topology, we simulate our platforms with

1015

203.231 202.738

401.669

544.074

0

100

200

300

400

500

600

16 32

Tr
ai

ni
ng

 T
im

e
(u

s)

Total computing nodes within the platform

(a)

574.911
739.759703.653

1046.753

0

200

400

600

800

1000

1200

16 32

Tr
ai

ni
ng

 T
im

e
(u

s)

Total computing nodes within the platform

(b)

512.067 526.083
595.155

781.339

0
100
200
300
400
500
600
700
800

16 32

Tr
ai

ni
ng

 T
im

e
(u

s)

Total computing nodes within the platform

(c)

Fig. 11. The time consumed by the hardware platforms to train the DNN models. Including DLRM Hybrid Parallel (a), MLP ModelParallel (b) and
MLP HybridParallel Data Model (c). The blue bar represents the switch-based fully connected platform we proposed, and the green bar represents the
hierarchical torus platform.

2 to N local-switches. The experimental results are shown in

Figure 9(a) and 9(b), from which the following analysis can

be made.
Firstly, compared with the ring topology, our fully con-

nected topology accelerates the all-to-all operation. When 4

and 8 NAMs are set, the communication time is reduced

by up to 73.59% and 93.11%, respectively. In the latter

comparison, this substantial acceleration comes from that the

characteristics of the fully connected topology make the all-

to-all communication algorithm save 21 steps.
Secondly, for the all-reduce operation, our proposed algo-

rithm allows the data to reach the end node directly. And com-

bined with the fully connected topology, the communication

steps are reduced. When 4 and 8 NAMs are set, the communi-

cation time is decreased by 65.82% and 75.89% respectively at

most. In comparison, our proposed topology is more suitable

for all-to-all collective communication algorithm.
Thirdly, it can be seen from the graph that, in these two

configurations of fully connected topologies, setting three and

four local-switches respectively can bring higher communica-

tion speeds. If we continue to increase the number of local-

switches, the hardware overhead will also increase, which

will bring a poorer price-performance ratio. Therefore, in

subsequent experiments, we only conduct an in-depth analysis

of the topology with three or four local-switches embedded in

each NAP.
Further, for the all-reduce operation, we analyze different

communication data sizes, and the results are shown in Figure

10. It can be observed that the method proposed in this paper

is always better than the ring structure, which proves that our

platform can train large Deep Neural Networks.

B. Proposed Platform vs. Hierarchical Torus for the Training
Time of DNN Models

Figure 11 describes the training time consumed when train-

ing different DNN models, including two training iterations,

on the two kinds of platforms (3 or 4 local-switches within

a NAP in our platforms). Each platform consists of 4 NAPs

with 4 (the left side of each subfigure) or 8 (the right side)

computing nodes per NAP. By comparing the training time on

different platforms, we can draw the following conclusions.

Firstly, compared with the hierarchical torus, our platform

significantly improves the distributed training speed of all three

DNN models. In this work, a speedup of 1.16-2.68 times is

achieved. This is because, on a distributed platform, the train-

ing process relies on the support of collective communication

operations. Therefore, optimizing the interconnection network

can greatly improve training efficiency.
Secondly, the most noticeable acceleration appears on the

right side of figure 11(a). Besides, among all three workloads,

the time consumed to train the DLRM Hybrid Parallel model

is reduced the most, which once again confirms that our fully

connected topology is more suitable for all-to-all collective

communication operations.
Finally, when more computing nodes are set up in a NAP,

i.e. from four to eight, the acceleration provided by our

platform is even more significant. For example, in figure 11(b),

the speedup increases from 1.22× to 1.41×. It means that

our platform also has extremely high scalability, which is

particularly important when larger-scale distributed systems

need to be deployed.

C. Power Consumption and Area Analysis
To evaluate the hardware overhead, we use DSENT to

analyze the power and area consumed by the links and routers

in our proposed topology and the hierarchical torus with 45 nm

bulk LVT. And the result is shown in Figure 12. The power

depicted in Figure 12(a) and 12(c) includes dynamic power

and static power.
Because our topology uses some additional structures, it

inevitably consumes more resources. In the experiment, when

there are four computing nodes in each NAP, our topology

consumes 7.65% more energy than the hierarchical torus

topology and takes up 1.78% more area. If there are eight

nodes in each NAP, compared with the hierarchical torus, the

increased energy consumption is 12.42%, and the increased

area occupied is 25.07%.
Because there are many other functional modules in a

distributed system, such as computing units, storage units, etc.,

the interconnection network is only a small part of the plat-

form. Therefore, given the obvious performance improvement,

we think this small additional on-chip overhead is worthwhile.

1016

78.618

164.747

73.53

147.062

0
20
40
60
80

100
120
140
160
180

16 32

Po
w

er
 c

on
su

m
pt

io
n(

W
)

Computing nodes of the platform

Our Platform The hierarchical torus

(a) Router power consumption

1.71

4.19

1.68

3.35

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

16 32

Ar
ea

 (c
m

²)

Computing nodes of the platform

Our Platform The hierarchical torus

(b) Router area consumption

2.34

7.352

1.671

6.016

0
1
2
3
4
5
6
7
8

16 32

Po
w

er
 c

on
su

m
pt

io
n(

W
)

Computing nodes of the platform

Our Platform The hierarchical torus

(c) Link power consumption

0.0807

0.254

0.0577

0.208

0

0.05

0.1

0.15

0.2

0.25

0.3

16 32

Ar
ea

 (m
m

²)

Computing nodes of the platform

Our Platform The hierarchical torus

(d) Link area consumption

Fig. 12. The power and area consumption of routers and links within different platforms

VI. CONCLUSION

In recent years, with the continuous development of DL

and the Internet, DNN models have become more and more

complex, and at the same time, more and more training data

have been brought, which lead to an exponential increase in

training time. To meet this challenge, research on distributed

DL training platforms is one of the strategies.

In this work, we first lay out an intra-package communi-

cation topology, i.e. the switch-based fully connected topol-

ogy, which accelerates the all-to-all collective communication

operation. Then, based on this topology, unprecedented all-

reduce and all-gather algorithms are proposed to accelerate

the collective communication operations commonly used in

DNN training. In other words, by combining the research on

hierarchical topology and collective communication algorithm,

we optimize the hierarchical torus interconnection network and

eventually build a distributed DL training platform that can

greatly improve the training efficiency.

In future work, we plan to use a larger-scale training plat-

form as the background to conduct a more in-depth discussion

on the number of local-switches within a NAP. And we try to

design a new inter-package communication topology, hoping

to further reduce the communication time consumed when

training DNN models.

REFERENCES

[1] Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. 2016.

[2] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha. Garnet: A detailed on-
chip network model inside a full-system simulator. In IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS
2009, April 26-28, 2009, Boston, Massachusetts, USA, Proceedings,
2009.

[3] M. Beck and M. Kagan. Performance evaluation of the rdma over ether-
net (roce) standard in enterprise data centers infrastructure. International
Teletraffic Congress, 2011.

[4] S. Chaturapruek, J. C. Duchi, and Christopher RXe. Asynchronous
stochastic convex optimization: the noise is in the noise and sgd don’t
care. 2015.

[5] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed
synchronous sgd. 2016.

[6] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J.
Wu, and A. Y. Ng. large scale distributed deep networks. 2011.

[7] W. J. Dally. Route packet, not wires : On-chip interconnection networks.
In Proc. IEEE/ACM Design Automation Conference, 2001.

[8] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, and P. Dubey.
Distributed deep learning using synchronous stochastic gradient descent.
2016.

[9] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. 2018.

[10] D. Jia, D. Wei, R. Socher, L. J. Li, L. Kai, and F. F. Li. Imagenet: A
large-scale hierarchical image database. Proc of IEEE Computer Vision
Pattern Recognition, pages 248–255, 2009.

[11] N. P. Jouppi, C. Young, N. Patil, D. Patterson, and Gaurav Agrawal Et
Al. In-datacenter performance analysis of a tensor processing unit.
Computer architecture news, 45(2):1–12, 2017.

[12] A. Krizhevsky. One weird trick for parallelizing convolutional neural
networks. Eprint Arxiv, 2014.

[13] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012.

[14] L. Li. Parallelized stochastic gradient descent. 2016.

[15] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, and B. Y. Su. Scaling
distributed machine learning with the parameter server. ACM, 2014.

[16] E. Lindholm, M. J. Kligard, and H. Moreton. A user-programmable
vertex engine. ACM, pages 149–158, 2001.

[17] S. A. Mojumder, M. S. Louis, Y. Sun, A. K. Ziabari, and A. Joshi.
Profiling dnn workloads on a volta-based dgx-1 system. In 2018 IEEE
International Symposium on Workload Characterization (IISWC), 2018.

[18] M. Naumov, D. Mudigere, Hjm Shi, J. Huang, N. Sundaraman, J. Park,
X. Wang, U. Gupta, C. J. Wu, and A. G. Azzolini. Deep learning rec-
ommendation model for personalization and recommendation systems.
2019.

[19] P. Patarasuk and Y. Xin. Bandwidth optimal all-reduce algorithms for
clusters of workstations. Journal of Parallel Distributed Computing,
69(2):117–124, 2009.

[20] P. Patarasuk and X. Yuan. Bandwidth efficient all-reduce operation on
tree topologies. In IEEE International Parallel Distributed Processing
Symposium, 2007.

[21] E. Qin, A. Samajdar, H. Kwon, V Nadella, and T. Krishna. Sigma: A
sparse and irregular gemm accelerator with flexible interconnects for dnn
training. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020.

[22] S. Rashidi, P. Shurpali, S. Sridharan, N. Hassani, and T. Krishna.
Scalable distributed training of recommendation models: An astra-sim
+ ns3 case-study with tcp/ip transport. In 2020 IEEE Symposium on
High-Performance Interconnects (HOTI), 2020.

[23] S. Rashidi, S. Sridharan, S. Srinivasan, M. Denton, and T. Krishna. Ef-
ficient communication acceleration for next-gen scale-up deep learning
training platforms. 2020.

[24] S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna. Astra-sim: En-
abling sw/hw co-design exploration for distributed dl training platforms.
In 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2020.

[25] G. F. Riley and T. R. Henderson. The ns-3 Network Simulator. Modeling
and Tools for Network Simulation, 2010.

[26] Bernhard Schlkopf, John Platt, and Thomas Hofmann. Map-reduce for
machine learning on multicore. In Advances in Neural Information
Processing Systems 19: Proceedings of the 2006 Conference.

[27] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns. interspeech, 2014.

[28] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
cun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. Eprint Arxiv, 2013.

1017

[29] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei, Jason
Miller, Anant Agarwal, Li-Shiuan Peh, and Vladimir Stojanovic. Dsent-a
tool connecting emerging photonics with electronics for opto-electronic
networks-on-chip modeling. In 2012 IEEE/ACM Sixth International
Symposium on Networks-on-Chip, pages 201–210. IEEE, 2012.

[30] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism
to program gpus for general-purpose uses. ACM SIGOPS Operating
Systems Review, 40(5):325–335, 2006.

[31] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective
communication operations in mpich. International Journal of High
Performance Computing Applications, 2005.

[32] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, and K. Macherey. Google’s neural machine
translation system: Bridging the gap between human and machine

translation. 2016.

[33] Y. You, I. Gitman, and B. Ginsburg. Scaling sgd batch size to 32k for
imagenet training. 2017.

[34] MD Zeiler and R. Fergus. Visualizing and understanding convolutional
neural networks. European Conference on Computer Vision, 2013.

[35] S. Zhang, A. Choromanska, and Y. Lecun. Deep learning with elastic
averaging sgd. MIT Press, 2014.

[36] Shenyi Zhao and Wujun Li. Fast asynchronous parallel stochastic
gradient descent: a lock-free approach with convergence guarantee.
AAAI Press, 2016.

[37] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z. M. Ma, and T. Y.
Liu. Asynchronous stochastic gradient descent with delay compensation.
2016.

1018

