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Abstract—Mobile devices face the problem of handover signal
sources in mobile communication networks. It is particularly
difficult to address this problem in 5G networks, because the cov-
erage area of 5G base stations is smaller than that of traditional
mobile communication networks, e.g., 4G networks. Therefore,
when a device is moving, it needs to frequently handover base
stations to maintain the connection with the network in the 5G
network. Given that 5G networks have high requirements for low
latency and high reliability, new methods need to be proposed
to optimize the selection of gNBs for devices. The prediction of
the UEs’ trajectory can reduce redundant handovers between
devices and base stations. However, the prediction of the UEs’
movement trajectory requires sufficient user movement data to
achieve the desired prediction accuracy. For users with less
trajectory data, inaccurate predictions may cause negative effects
and even increase the number of handovers. In this paper, we
propose a gNB handover model based on user similarity. The
evaluation results show that our method can reduce the number
of handovers by 50% compared with existing related solutions,
which means that the proposed method will effectively reduce
the transmission delay and enhance the robustness of the gNB.

Index Terms—5G, gNb handover, trajectory prediction, user
similarity

I. INTRODUCTION

The generation NodeB (gNB) has the characteristics of low

delay with big data [1]. This has promoted the development

of a number of date-oriented industries, such as Internet

of vehicles, telemedicine, and mobile smart devices [2]–[5].

Mobile devices that require low latency may be prone to

accidents due to the delay caused by handover when mobile

devices are moving [6]. In addition, the high bandwidth of

millimeter microwaves will allow 5G networks to provide

high-precision positioning, and User-Equipment (UE) has be-

come increasingly intelligent and will carry high-precision

GPS positioning capabilities. There is a trend to combine

artificial intelligence with the network [7]–[10], such as deep

learning for Internet of Things security [11], [12] and network

resource scheduling [13], [14].

Mobile prediction can improve the performance of 5G

networks by sensing the location of communications, com-

puting tasks, and UE mobility in 5G edge networks [15],

[16]. For example, mobile load balancing of the cell [17].

The introduction of mobility prediction into 5G network can

effectively avoid the delay caused by handover and improve

the mobility management and robustness of the network [18],
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[19]. However, a big challenge for mobile prediction to be

utilized in base station handover is that the handover results

heavily relies on the prediction accuracy. Once the accuracy

of the prediction is not high, it will have a negative impact on

the mobile system generated by the network. Moreover, UE in

5G will handover far more frequently than 4G networks [20].

Therefore, how to achieve efficient handover between base

stations is a challenging problem for UEs in 5G networks.

Handover is one of the basic elements of mobility manage-

ment in wireless networks. It allows UEs to roam between

wireless networks, making the UEs associated with the base

station handover to the next base station or handover between

sectors without interrupting the session [21]. Therefore mobil-

ity, security, high Quality of Service (QoS), and user reliability

all depend on this seamless handover. When the UE is moving

at high speed, it will increase the difficulty of handover

selection in the wireless network, and reasonable handover

will become a key factor for efficient data transmission.

The 4G networks mainly relies on hard handover, that is,

disconnect first and then connect. The current 5G network use

soft handover, and some equipment disconnected for tens of

milliseconds may cause damage, such as unmanned vehicles.

When the UE is handover from the serving cell to the target

cell, the generating force of the handover process depends on

the appropriate time and precision of the measurement control

variables that maintain the data correlation in the handover

decision step. Therefore, if the quality of the measured variable

is not good or the time is not right, it will cause unnecessary

handover [22].

The 5G base station has high frequency and weak signal

penetration, and the coverage range of 5G base station is only

about 200m-500m [23]. Frequent handover will cause a sharp

increase in the cost of the base station, and the handover

failure rate will also increase [24]. One of the effective ways

to address this problem is to introduce the user mobility

prediction into the wireless network. The handover of the

target cell depends on the mobile prediction of UEs, which

can reduce the unnecessary handover and the measurement of

the neighbor cell. The prediction of UE movement trajectory

can help terminal devices to realize proactive handover, avoid

the disadvantage of reactive handover, and realize intelligent

connection of base stations. 5G base stations have edge

computing function, which can analyze user behavior and

predict user trajectory ability [15]. The accuracy of user
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trajectory prediction directly affects the handover performance

and overhead of base station. At present, many studies are

based on a large amount of data of a single user to make

trajectory prediction [24], [25]. However, for new users or new

locations, previous single-user prediction models often have

large deviations, which makes it difficult to give satisfactory

results.

In recent years, some studies have focused on the default

of sufficient user movement trajectory data [24] or other

information, such as Received Signal Strength (RSS) [26]

or past handover information [21]. However, for users who

seldom pass through the base station area, there are problems

such as low accuracy of prediction and unreasonable handover

planning. In view of the above problems, we make the

following contributions:

• We use similarity to address the unpredictable problem

of user with insufficient trajectory data, and extract user

data in the form of grid to better mine user similarity.

• We propose a gNBs model assisted by UE similarity

to optimize the handover efficiency of gNBs, which

can optimize 5G small cells handover and reduce the

handover times.

The rest of this paper is organized as follows. In Section II,

we discuss the related work. Then, in Section III, the detail

problem is described. Section IV introduces the proposed

system model in detail. Section V presents the experimental

results and Section VI concludes the paper.

II. RELATED WORK

There are two main categories of research. The first type is

the handover algorithm without the deep learning or machine

learning. The second type is handover algorithm with deep

learning or machine learning.

A. Methods Without Machine Learning

We mainly focus on the research of introducing user move-

ment trajectory prediction into base station handover. Mandour

et al. proposed a handover scheme based on Reference Signal

Received Power (RSRP), Reference Signal Receiving Quality

(RSRQ), UE parameters and their movement direction [27].

This scheme selects the most appropriate target flight network

among numerous candidate cellular networks, which can re-

duce the number of redundant handover times of LTE and

improve the success rate of UEs handover. The disadvantage

of LTE-A hard handover (i.e., the UE handover speed is not

fast enough) may cause the UE to be disconnected from

the Internet. In order to solve this problem, Ahmad et al.

proposed an LTE-A connection scheme based on user history

and user movement direction [21]. When user closer to the

handover point, gNB will look at history, according to the

user to connect records to select target base stations. If the

UE does not record the handover base station, then the user

will choose the cosine function and distance to select the target

base station. Tao et al. in [28] proposed an intelligent handover

mode based on the mobile mode of the user terminal, which

can intelligently determine the next base station access point to

Fig. 1. The scenario of handover

be visited by the user terminal through the mobile information

history of the user terminal. This technology can effectively

reduce the number of handover, handover delay and ping-pong

handover [29], but its mobile decision complexity is relatively

high.

B. Methods With Machine Learning or Deep Learning

In [30], the authors proposed a prediction model of 5G

mobile system based on the combination of neural network

and Markov chain. The data results show that in the Internet

of vehicles, the prediction accuracy of mobile terminals within

4 seconds before handover can reach 88%. The traditional base

station handover model rarely consider the hotspots. Deng et

al. [24] put forward a kind of heterogeneous based on HMM

cellular mobile user behavior prediction model which adopt

the SLAW model to simulate the hot spots in the user mobile

path. The results showed that the model can improve the

accuracy of user behavior prediction in hot spots and can make

effective preparation for the upcoming handover requests. Ulan

et al. considered the prediction of user mobility to improve

handover strategy in 802.16am broadband wireless access,

and proposed two strategies of active handover and passive

handover to reduce the possibility of signal loss and handover

times respectively [22].

In [25], Hasan et al. proposed an energy saving framework

for 5G ultra-dense network based on user mobility prediction.

The trajectory was generated through SLAW trajectory and

input to discrete time Markov model for user movement

trajectory prediction. Meanwhile, optimization was discussed

in this paper when the accuracy of user trajectory prediction

reached 55%. The accuracy below 55% would be an increase

in the power consumption of the base station. In [26], Li et

al. proposed two base station different handover algorithm by

introducing Multi-Armed Bandit(MAB) to reduce unnecessary

handover by carefully deciding the next base station to which

the user should handover, therefore the handover UE could

connect for as long as possible.

To sum up, the current research predicts the mobile tra-

jectory of UEs based on the trajectory data of large amount

of data. If the user is a new user or new location data, the

prediction behavior will have a negative effect and increase

the cost of the base station.
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III. PROBLEM DESCRIPTION

A. Handover Scene

As shown in Fig.1, the gNB handover scenario of 5G

network is briefly described. The handover is triggered by the

degradation of the signal quality caused during the movement

of UE (device A) . The UE will frequently scan the RSRP or

RSRQ or Signal to Interference plus Noise Ratio (SINR) of the

serving cell, and the handover process will be triggered when

the UE measurement value is below the threshold. When the

UE moves from the serving gNB to the target gNB, the RSRQ

and RSRP of the UE serving gNB gradually decrease, and the

RSRP and RSRQ of the corresponding target gNB gradually

increase. When the UE enters the public area, the handover is

triggered by the specific threshold set according to the event

occurs within the Time to Trigger (TTT) period cycle. UEs

can set thresholds to trigger handover within the TTT time,

effectively avoiding ping-pong effect [29]. Meanwhile, TTT

can be set according to the user’s moving speed [31].

When the UE sends the quality inspection report to the

serving gNB, the corresponding measurement values of all

neighborhood gNBs will be sent to the serving gNB. Then,

the handover process starts and selects the target gNB to be

switched from the list of neighborhood gNBs, and then the

handover is executed. The UE establishes a new connection

with the new serving cell, and the target gNB and the serving

gNB realize resource synchronization to complete the han-

dover. But the UE cannot handover to the target gNB within

a certain period of time, the UE will fail to handover.

Handover Process: The measurement reporting defines six

events (A1, A2, A3, A4, A5, and A6) and two events (B1,

B2) for the 5G NR network to trigger the handover [32].

Compared with LTE, the 5G NR network adds A6 events,

that is, when the neighboring cell is higher than the serving

cell’s Cell Individual Offset (CIO). Handover procedures are

divided into collection of information, handover request and

handover execution.

As shown in Fig. 2, when the UE completes access or

handover, the serving cell will send the measurement control

information to the UE. The gNB will issue the updated mea-

surement information over the Radio Resource Control (RRC)

connection when the measurement configuration information

is updated. The first step is to trigger the measurement.

When the UE detects the wireless channel and meets the

measurement conditions (A1-A6, B1 and B2), the user will

send the measurement report to gNB. The trigger of the user

measurement event can be RSRP, RSRQ or SINR, then the

handover decision will be activated, which constitutes the

second step. In the third step, the serving gNB will select the

appropriate target gNB according to the quality measurement

report of the neighborhood cells to send the handover request,

apply for the application and allocation of resources. The target

gNB has the right to refuse or accept the handover request of

the serving gNB. In the fourth step, the target gNB sends

the confirmation information to the serving gNB. Finally, the

serving gNB sends the handover command to the UE, and the

UE executes the handover command to handover to the target

gNB and disengage from the serving cell [33].

IV. THE PROPOSED MODEL

Although human activity areas and turnover patterns are

highly free and diverse, the trajectories of users will also show

structural patterns due to geographical and social restrictions.

Human beings experience a periodic trajectory movement,

which is related to their social relations, hobbies, geographical

restrictions, etc., so the trajectory information of users is

predictable [34].

In previous UEs movement prediction research, Although

some studies are based on deep learning or machine learning,

but these models are based on the large amount of trajectory

data [24], [30]. However, when the amount of data of UE in the

active area is small, the prediction results of user movement

behavior are often not accurate. Therefore, we use the UE

data set to find the most similar UE with the target UE in this

paper, and uses the mobile behavior of similar UE to assist the

prediction of the UE. When there is no historical track record

and handover record of this place in the historical track of the

target UE, we can use the user-aided prediction of similar UE

can be used to give a prediction result. Since the movement

behavior of similar UE is similar to that of the target base

station, the prediction result of similar UEs can be used as the

prediction result of the target UE in this location.

Humans experience a combination of periodic movements

that are geographically limited and seemly [34]. Therefore we

put forward the key of the target user mobile patterns as its

movement characteristics, and find the target UEs the most

similar to help predict target UEs next track points. It can help

solve the problems of the base station less target UE data. By

accessing user track records of intelligent devices at the UEs,

it can provide UEs with high-quality services and improve the

quality of network communication and the robustness of the

network system.

A. UEs Similarity

We define similarity mining for base station user data,

and location history is a record of locations visited by en-

tities in geospatial space over a period of time. As shown

in Fig. 3, the historical trajectory point of the user data

can be defined as gi =< xti , yti >. xti , yti denote the

longitude and latitude of the i track point of the user. His-

tory of base station users uk sequence can be expressed as

Tuk ={(t0, g0), (t1, g1), (t2, g2), ..., (tn, gn)}. Firstly, we grid

the areas visited by base station users, define the grid visited

by base station users as k, and record the time period of each

visit. The red track on the left is converted to the red track in

the grid on the right. The track with different colors represents

the track points that the user visits in this area at different

times. We set a reasonable length L of each grid. Different

sizes of L can adjust the size of the geographical location

area. We can adjust the size of L to divide the user’s access

area hierarchically. If the user has continuous track points in a

grid and only records one point, then the key movement mode
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Fig. 2. The process of 5G handover

Fig. 3. The overview of user trajectory data mapping into network

is extracted, denoted as ki =< k1, k2, k3, ..., kn >, where

i represents the movement track of the user in the ith base

station, and n represents the length of the user’s movement

mode.

In this paper, the similarity of key modes is measured by

cosine similarity and the length of the maximum common

substring of key modes, and the similarity of different users

is quantified. Among them, the similarity of users measuring

key modes based on the maximum substring is calculated as

follows:

sim(mi, nj) =
2 ∗ lcx(mi, nj)

len(mi) + len(nj)
(1)

where mi and nj represent the ith and jth movement modes of

base station user m respectively, where lcx(mi, nj) represent

the longest common substring of the two key modes of user

m and n, len(mi) and len(nj) represent the length of the key

modes of user m and n.

B. Prediction Model Based on the Similar UEs

The predicted values of the above models and the actual

trajectories of target UEs are input into the evaluate model of

the network base station, and the target UEs are taken as the

actual mobile trajectories of the UE.

As shown in Fig. 3, we input the UEs’ actual trajectory

and predicted UEs trajectory points into the network evaluate

in this paper. The coverage radius of 5G base station is

about 200m [23]. In this model, we select the appropriate

base station for handover according to the trajectory points

predicted by users and their directions. In this model, we

select the appropriate base station for handover according to

the trajectory points predicted by UEs and their trajectory

directions. If the predicted point can connect to multiple base

stations, select the base station with low load. The specific

algorithm is shown in Algorithm 1.

Algorithm complexity analysis: Assuming that there are n
old UE trajectory data, we first need to traverse the first K
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TABLE I
NETWORK SIMULATION MODEL PARAMETER SETTING

Parameter Values or description
Number of 5G gNBs 25

Coverage of single 5G gNBs 200 m

gNBs layout The gNBs are evenly distributed in the vehicle’s activity area. The inter-site distance is 250 m.

User mobility
We input the trajectory of the real user, made up of GPS trajectory points with movement. GPS trajectory points
are mapped to the experiment.

Simulation time 180s

Vehicle speed The average speed of the user is measured by the distance from the next track point

Handover rule
We define three kinds of users in different ways to connect the gNBs. First is to connect the Rate-First handover
(RFH). The second is random handover, and the third is that we propose gNBs handover based on user trajectory.

Random RFH Proposed
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Fig. 4. Experiment results

Algorithm 1 Handover Algorithm

input: predicate Trajectory, gNB list, Candidatelist
output: gNBs selected

1: max dist← max
2: gNBs selected← NULL
3: most simuser ← NULL
4: point List← NULL
5: point list.add(ue.point)
6: most simuser = search(pont list add, point list)
7: next point = most simuser.find(p)
8: while gNB! = NULL do
9: dist = disatance(gNB.point, next point)

10: if dist < min dist then
11: min dist← dist
12: gNB selected = gNB
13: end if
14: end while
15: return gNBs selected

trajectory data to find the old UE most similar to this UE.

Suppose the number of trajectory points of each old UE is nuk
.

Therefore, the time complexity of finding similar trajectory

segments is O(numuk
). The time complexity of finding the

most similar UE is O(nuk
∗n). Finally, the time complexity of

choosing the most appropriate gNB algorithm from m gNBs

in the switchable list is O(nuk
∗n∗m). The spatial complexity

of the algorithm is mainly related to the length of the trajectory

data stored by the user, whih is O(n ∗ nk).

C. The Theoretical Analysis

We search the UE uk that is most similar to the target UE

simuk, through the track of UE simuk predict the position

pk = {xk, yk} after the time k, and the next tuple information

of the target user is expressed as {C0
N , THO}. THO is the

location of the gNB C0
N . We seek to find the cell closest to

pk within the cell tuple as the target cell of the next handover.

If the target user can accurately predict the probability p of the

next location by the algorithm presented. In this paper, there

may be a certain error which will not change the accuracy of

handover. The error is set to ε, then the handover accuracy

can be p+ ε, and p+ ε < 1. If the probability of user error is

1− p− ε, a negative gain effect may occur. The UE handover

count Nuk
can be presented as:

NuK
=

{
C −N2(p) P = ρ+ ε

C +N1(p) P = 1− ρ+ ε
(2)

where the C is the handover count of default algorithm, and

the N1(p) and N2(p) are the negative gain effect and gain

effect generated by the predicted result, the handover counts

of the UE can be expressed as total(N) = (p + ε) ∗ (C −
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N2(p)) + (1 − p − ε) ∗ (C + N1(p)). The more accurate the

prediction, the more significant the gain.

V. PERFORMANCE EVALUATION AND ANALYSIS

A. Dataset

We use the Geolife-Trajectory-Dateset, which contains a 5-

year GPS trajectory data set with a history of 182 users to

evaluate our model [35]. In this evaluation, we preprocess the

user trajectory data firstly. Deleting data record fewer users.

We set the time span is not more than 5s between two adjacent

trajectory point. We remove the discontinuous user record and

select users with continuous time span of the GPS data. In

order to better predict the UEs’ next points, meet the demands

of the design of experiment gNBs scene a small scale, we

select the Beijing center to the user in a small area as the

experimental data, the precision of GPS in the diameter of

[39.8, 40.0] and latitude [116.3, 117.4]. We take new users

with small data as input data, and users with large data as old

UE. Through user similarity analysis, the trajectory of new

users can be predicted based on the mobile behavior of old

UE.

B. Results Analysis

In order to evaluate the performance of our algorithm, we

design a simulation experiment, the key system parameter

settings in TABLE I.

The simulation results are shown in Fig. 4(a) and Fig. 4(b).

We look for the UEs trajectories that are most similar to users

with less data or to new users, and use the similarity of user

trajectories to help predict target users. As shown in Fig. 4(a),

random handover and Rate-First handover methods are used

for comparison, and the handover times of similar users are

predicted after 5 seconds. As shown in Fig. 4(b), when the user

specifies a number of seconds to predict the UEs’ trajectory,

the prediction increases gradually after 15 seconds, because

the accuracy of the prediction decreases after 15 seconds when

the UE is moving.

VI. CONCLUSION

With the rapid development of 5G networks, the efficient

handover of UEs between base stations has attracted more

and more attention. In existing studies, the prediction of UEs

requires a large amount of data to achieve a certain accuracy or

the trajectory data generated through simulation experiments,

but the simulation lacks objectivity. In this paper, we propose

a base station handover algorithm based on user trajectory

similarity, which can make up for the prediction of new users

or the small amount of user data, aiming at the shortcomings of

previous studies that require a large amount of user trajectory

data to improve the accuracy. The experimental results show

that compared with the standard scheme and the reference

scheme, the proposed algorithm can reduce the handover times

and improve the performance of the network system.
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