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Abstract—Sleep staging is an important method to diagnose
and treat insomnia, sleep apnea, and other sleep disorders.
Compared with the multi-channel automatic sleep staging system,
the single-channel EEG signal contains less information, and the
traditional single analysis domain feature parameter extraction
algorithm cannot meet the requirement of sleep stage classifica-
tion accuracy. To solve this problem, we propose an automatic
sleep staging method based on the combination of time-domain
and frequency-domain features based on single-channel EEG
signals. Empirical mode decomposition is used to decompose
EEG signals in the time domain to obtain the decomposed
signals at different time scales. Multiple local features are
extracted from each decomposed signal. The frequency-domain
features of EEG signals are obtained by using the frequency
domain decomposition of EEG signals in various rhythms. The
time-domain and frequency-domain decomposition features are
combined into eigenvectors and selected for sleep staging. The
experimental results show that the sleep staging method proposed
in this paper with time-frequency domain features of single-
channel EEG signals can approach the accuracy of sleep staging
of multi-channel signals on the same data set, and superior to the
sleep staging method with the same single-channel EEG signals.

Index Terms—sleep stage classification, Empirical Mode De-
composition, frequency-domain decomposition, time-frequency
domain features

I. INTRODUCTION

Sleep is one of the most important physiological activities of

human beings. Effective night sleep is vital to human health.

In modern society, with the increase of life pressure, more

and more people suffer from sleep disorders [1]. Accurate

sleep stage classification can better diagnose and treat insom-

nia, sleep apnea and other sleep disorders. Polysomnography

(PSG) is the gold standard for clinical diagnosis of sleep disor-

ders and is widely used in sleep monitoring. According to the

physiological signals of electroencephalogram (EEG), electro-

cardiogram (ECG), electrooculogram (EOG), electromyogram

(EMG) and oxygen saturation measured by this instrument,

sleep quality is obtained by sleep experts [2]. Manual grading

by a sleep expert leads to problems such as high test cost and

long sleep assessment time.

Designing a simple and reliable automatic classification

system for sleep staging is an effective way to solve the

above problems. In recent years, automatic sleep staging has

been widely studied. The multi-channel signal sleep staging

method according to various physiological characteristics such

as EEG waveform type, eye movement, and muscle activity.

However, this method requires multiple monitoring circuits to

be connected to the subjects, which will affect their normal

sleep. Among these physiological signals, EEG signals can

reflect the change of sleep pattern in each sleep stage, and

play a crucial role in the recognition of sleep stage, which

is widely used for sleep staging. The double-electrode device

of single-channel EEG signal has the advantages of easy to

wear and little sleep interference. Therefore, the single-channel

EEG signal is used as the input of our automatic sleep stage

classification model.

The EEG sleep staging method based on machine learn-

ing includes feature extraction, feature selection and feature

classification. The analysis of EEG signals during sleep and

effective feature extraction is the key problems in the research.

The extracted features mainly include time domain [3]– [5],

frequency domain [6]– [9], and time-frequency domain. Time

domain analysis method is to perform EMD or Ensemble Em-

pirical Mode Decomposition on EEG signals, extract statistical

features such as mean value and variance, and obtain sleep

staging results by using a classifier. Although the time domain

analysis and calculation is relatively simple, it is difficult to

achieve good sleep staging results. Frequency domain analysis

is the transformation of brain waves which amplitude changes

with time into the spectrum of EEG power changes with

frequency. However, the frequency domain decomposition can

only reflect the explicit mode of the signal, and ignore the

inherent mode of the signal. In addition, the frequency domain

decomposition does not reflect the time when the EEG signal

occurs in some frequency range.
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TABLE I
THE NUMBER OF EPOCHS OF VARIOUS SLEEP STAGES

Database Subjects W S1 S2 S3 S4 REM Total

SEDF 4SC+4ST 7927 483 3225 619 500 1383 14137
SEDFX20 10SC+10ST 19024 1359 7464 1319 962 3461 33589

SEDFX20* 20SC 37068 1435 9692 1750 1147 3754 54846
UCD 25 3979 2864 6332 590 1810 2750 18325

Time and frequency domain analysis is a feature extrac-

tion method combining time domain and frequency domain.

In [10], the most informative features were extracted using

discrete wavelet transform, statistical values of sub-bands were

calculated and fed into a rotational support vector machine.

In [11], three time-frequency techniques were deployed for

the analysis of the EEG signal: Choi–Williams distribution,

continuous wavelet transform, and Hilbert–Huang Transform.

Features were extracted from the time-frequency representa-

tion of the EEG signal using Renyi’s entropy. However, it is

necessary to select the appropriate wavelet basis function for

the wavelet transform of EEG. The wavelet function derived

from a single basis function is difficult to approximate the local

characteristics of the signal accurately at different scales.

Hassan et al. [12] calculated the Gaussian probability den-

sity function parameters with the sub-band of the decom-

position of tunable Q factor wavelet transform, and used

an adaptive boosting algorithm to classify the sleep stages.

Sharma et al. [13] conducted three-stage wavelet decompo-

sition of EEG signals, calculated the distinguishing features

of sub-bands, and used a support vector machine to obtain

sleep staging results. The tunable Q factor wavelet transform

can effectively represent the sparsity and non-stationarity of

signals in the time-scale domain. However, the decomposition

of EEG signals is still limited by three parameters: quality

factor, over-sampling rate, and decomposition layer number.

In this work, we propose to use empirical mode decom-

position (EMD) method to decompose EEG signals in time

domain, and then decompose EEG signals in frequency do-

main. The temporal and frequency characteristics of EEG

signals are fused to improve the accuracy of sleep staging. The

single-channel EEG signal automatic sleep staging method

overcomes the shortcomings of multi-channel signal sleep

staging connections that affect the subject’s sleep. With the

improvement of sensor performance [14] [15] and the devel-

opment of mobile sensor algorithm [16] [17], the method we

proposed is suitable for portable devices or wearable devices

and conducive to the realization of home sleep monitoring

systems.

The article is organized as follows: Section II details the

experimental data sets. Section III proposes the method via

combination of time and frequency domain features. Section

IV demonstrates the performance of the proposed method.

Section V shows the comparison to other single-channel

EEG and multi-channel methods. Finally, section VI gives

conclusions.

II. DATASET

PhysioNet [18] is a resource website supported by the

National Academy of General Medical Sciences and the

National Academy of biomedical imaging and bioengineering.

The PhysioNet Resource’s original and ongoing missions are

to conduct and catalyze for biomedical research and education,

in part by offering free access to large collections of physiolog-

ical and clinical data and related open-source software. Sleep-

EDF Expanded (SEDFX) [19] and St. Vincent’s University

Hospital/University College Dublin Sleep Apnea Database

(UCD) [20] are two public data sets widely used in the field

of sleep research.

A. SEDFX

The SEDFX database contains 197 whole-night polysomno-

graphic sleep recordings. Two PSGs of about 20 hours each

were recorded during two subsequent day-night periods at the

subjects’ homes in SC group. The PSGs of about 9 hours

were recorded in the hospital for two nights in ST group. All

the EEG recordings were sampled at the frequency of 100

Hz, then manually annotated by experts into different stages

according to the Rechtschaffen and Kales standard [21], which

are named as stage 1(S1), stage 2(S2),stage 3(S3),stage 4(S4),

REM, wake (W), movement time, or unscored. The movement

time and unscored category only mark the start or end time of

the record and are not related to the stage studied in this paper.

Each subject randomly selects a record for research, using

the EEG data of the PzOz channel. The Sleep-EDF (SEDF)

database is an early version of SEDFX, and the SC and ST

groups each included four PSG records. The standard of sleep

stage classification is the same as the SEDFX data set. The

number of epochs available for the wake and sleep stages in

our data sets is shown in Table I. The SEDFX 20 dataset

consists of 10 SC and 10 ST records, the SEDFX 20* dataset

consists of 20 SC records.

B. UCD

The UCD database contains 25 full overnight PSG record-

ings of adults with suspected sleep-disordered breathing. Sig-

nals recorded were EEG (C3-A2), EEG (C4-A1), left EOG,

right EOG, submental EMG, ECG, oro-nasal airflow, ribcage

movements, abdomen movements, oxygen saturation, snoring

(tracheal microphone), and body position. Sleep stages were

scored by an experienced sleep technologist according to stan-

dard Rechtschaffen and Kales rules. We use C3-A2 channel

EEG for our research. The number of epochs available for the

wake and sleep stages is shown in Table I.

1103



Fig. 1. 7 IMF examples of 30 seconds EEG signals decomposition.

III. METHODOLOGY

A. Preprocessing

While the EEG signal is detected, irrelevant signals such

as ECG, EMG, EOG, and respiration are transmitted to the

scalp through human skeleton, muscle, fat, and other tissues,

which are mixed in EEG signals to form physiological signal

artifact. The noise of this irrelevant information as the target

signal makes it difficult to collect and analyze the signal and

affects the study of EEG signal characteristics. To reduce the

influence of artifacts, a Butterworth Bandpass Filter with cut-

off frequencies of 0.1 Hz and 50 Hz is used to filter the single-

channel EEG signal. The filtered EEG signals are segmented

into epochs of 30 seconds.

B. Time-domain decomposition features

EMD is an adaptive time-frequency signal analysis method,

which preserves the characteristics of data itself in the de-

composition process, and is suitable for extracting the instan-

taneous characteristics of nonlinear and non-stationary EEG

signals. EMD decomposes the signal into a finite number

of Intrinsic Mode Functions (IMF). After decomposing the

original EEG signals, the form of formula (1) is obtained, in

which EEG(t) is the t-th 30 second EEG data, IMFi is the

Intrinsic Mode Functions, and r(t) is the residue.

EEG(t) =

n∑
i=1

IMFi + r(t) (1)

The 30 seconds original EEG signals and the first 7 IMFs

obtained by EMD are shown in Fig. 1.

Each IMF extracts 10 features including mean, variance,

standard deviation, Hjorth mobility (HM ), Hjorth complexity

(HC), log root sum of sequential variations [22], relative

energy, sample entropy, Higuchi fractal dimension, and Katz

fractal dimension. Some calculation process is as follows:

• Hjorth parameters: HM is the square root of the ratio

of the variance of the first-order difference signal and

the variance of the signal itself. HC is the standard

deviation of the second-order difference signal of the

EEG signal. The calculation process is shown in Formula

(2, 3). Where x(n) is the signal, x
′
(n) and x

′′
(n) are the

first and second derivatives of the signal. σx, σx′ and σx′′

are the standard deviations of x(n), x
′
(n) and x

′′
(n) ,

respectively.

HM = σx′ /σx (2)

HC = (σx′′ /σx′ )/(σx′ /σx) (3)

• Log root sum of sequential variations: The log root sum

of sequential variations (LRSSV ) is proposed in [22] to

measure the sequential variations between the samples of

the signal. The LRSSV is calculated using the following

expression,where N is the length of the signal x(n).

LRSSV = log10

√√√√N−1∑
n=1

(x(n)− x(n− 1))2 (4)

• Relative energy: The energy calculation process of each

IMF is shown in Formula (5). Where ai(n) represents

the instantaneous amplitude of the i-th IMF Hilbert

transform, and n represents the number of data points

in each epoch. The total energy is the sum of the energy

of each IMF, and the ratio of the energy of each IMF

to the total energy, relative energy (Ei), is taken as the

characteristic of sleep stages.

Ei =

∑N
n=1 |ai(n)|2∑

i(
∑N

n=1 |ai(n)|2)
(5)

• Sample entropy: The sample entropy (SampEn) cal-

culation process is shown in Formula (6). Where N
represents the number of data in the time series x(N),

m represents the reconstruction dimension, r represents

the threshold size, and Cm represents the number of data

whose distance between two m-dimension reconstruction

vectors is less than or equal to R.

SampEn(m, r,N) = − ln[
Cm+1(r)

Cm(r)
] (6)

• Higuchi fractal dimension (HFD): Correlation dimen-

sion is a common analytical method for one-dimensional

time series, which can determine the roughness or ir-

regularity of time-domain signals. The signal x(n) is

regrouped into k new series. For any parameter m smaller

than k, the k-th series is represented as

xm
k = {x(m), x(m+ k), x(m+ 2k)...

x(m+ �(N −m)/k� × k)}
m = 1, 2, ...k

(7)
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Then the length of the curve by connecting the k-th series

xm
k is

Lm(k) =
1

k

�(N−k)/k�∑
i=1

| (m+ ik)− x(m+ (i− 1)k) |
�(N −m)/k� × k/(N − 1)

(8)

The average of Lm(k) across all the possible parameter

m is

L(k) =
1

k

k∑
m=1

Lm(k) (9)

HFD is defined as the slope of the line which best fits the

point pairs(−ln(k), ln(L(k))) for all values of k smaller

than seven.

• Katz fractal dimension: Katz fractal Dimension (KFD)

is a method to calculate fractal dimension based on wave-

form data. The calculation process is shown in Formula

(10), where L refers to the sum of distances between

two successive points, and d represents the maximum

Euclidean distance between the first point and any other

point on the waveform.

KFD =
logN

logN + log(d/L)
(10)

C. Frequency-domain decomposition features

The features of EEG signals in the frequency range of

different sleep stages are important characteristic parameters

in the stages of sleep. Theta wave (4-8 Hz) and alpha wave

(8-12 Hz) are present in stage 1. During stage 2, the EEG

signal amplitude increases, and theta waves are also more

prominent in this stage. Theta wave and delta wave (0-4

Hz) are more noticeable in stage 3. The frequency of the

EEG signal during stage 4 varies between 0.5 and 2 Hz. In

REM period, sigma wave (12-15 Hz), beta wave (15-30 Hz),

and gamma wave(>30 Hz) are more dominant; hence, the

frequency content of the EEG signal is greater than 12 Hz.

Beta waves are also more predominant during wakefulness.

The results of [23] confirm that the spectral edge frequency

of 8-16 Hz, the absolute power and relative power of the signal

can effectively identify each sleep stage, especially the REM

stage. Therefore, we divide the Alpha wave of the EEG signal

into sub-segments separated by 1 Hz in order to effectively

distinguish the S1 and REM stages. The results of [24] show

that Wake and N1 can be effectively distinguished in the 9-

50Hz power range. Therefore, the frequency range is adjusted

from the commonly used 0.2-35 Hz to 0.1-50 Hz and the

Gamma wave is divided into 4 sub-segments to improve the

classification accuracy of S1 and awakening stage. According

to the frequency characteristics of EEG signals in different

sleep stages, the frequency range of 0-50 Hz is divided into 15

frequency bands. The range of each frequency band is shown

in Table II.

The time-domain signals of each frequency segment

are transformed into frequency domain signals by fast

Fourier transform. The mean value of frequency amplitude

TABLE II
FREQUENCY BANDS OF EEG RHYTHMS

Rhythm Frequency Band(Hz)

Frequency Range 0-50
Ultra-low Frequency 0.1-1

Delta 1-4
Theta 4-7

Alpha1 7-8
Alpha2 8-9
Alpha3 9-10
Alpha4 10-11
Sigma1 11-14
Sigma1 14-18
Beta1 18-25
Beta2 25-30

Gamma1 30-36
Gamma2 36-41
Gamma3 41-46
Gamma4 46-50

(Amp Mean) is calculated as the decomposition feature of fre-

quency domain. The power spectral density of each frequency

band is calculated to obtain the total power (Pxx). Besides, the

relative Energy (Energy) of each frequency band is calculated

as the decomposition feature of frequency domain. By calcu-

lating the mean amplitude value and total power in the total

frequency range from 0 Hz to 50 Hz, a total of 47 frequency

domain features are obtained.

D. Feature selection and classification algorithm

The sleep staging model proposed in this paper uses EMD

to decompose EEG signals in the time-domain, and the first

7 IMFs extract time domain features such as mean value,

variance, standard deviation, Hjorth mobility, Hjorth complex-

ity, log root sum of sequential variations, relative energy,

sample entropy, Higuchi fractal dimension, and Katz fractal

dimension. The EEG signal is divided into 15 frequency

segments according to the frequency range, and the frequency

domain features such as amplitude value, power, and energy

are extracted by fast Fourier transform.

In this work, features are selected according to the informa-

tion gain. The specific method is to consider the information

representation quantity of the sleep stages when calculating

the feature weight and the difference between the two is the

information gain of the feature to the sleep stages. The features

are selected by using the information gain as the weight of

the feature. As a classification model in this paper, random

forest is robust to noise and simple to implement. Random

forest is a classifier containing multiple decision trees, and the

output category is decided by voting on each decision tree. The

randomness of both training sets and selected features ensure

the diversity of decision trees, resulting in the high robustness

against overfitting. Ten fold cross validation method is used

to evaluate the accuracy (ACC), recall rate, precision rate, F1

score and Kappa coefficient.
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(a) relative energy in the Gamma3 frequency band. (b) average amplitude in the Gamma2 frequency band.

(c) KFD of IMF4. (d) HC of IMF2.

Fig. 2. Distribution of features.

Fig. 3. 7 IMF examples of 30 second EEG signal decomposition.

Fig. 4. Classification performance against the numbers of sorted features on
SEDFX20 dataset

IV. RESULTS

A. Feature selection and analysis

Features of the SEDFX20 dataset are selected according

to information gain. The relative energy of the Gamma3 fre-

quency band, the average amplitude of the Gamma2 frequency

band, the KFD of IMF4, and the HC features distribution

of IMF2 are shown in Fig. 2. The abscissa represents the 6

sleep stages and the ordinate represents the feature value. The

line from top to bottom represents the upper edge (maximum

value), the upper quartile, the median, the lower quartile, and

the lower edge (minimum value) in turn. The small figure

in Fig. 2(a) shows the relative energy feature distribution of

the Gamma3 frequency segment in S1, S2, S3, S4, and REM

stages. It can be seen from Fig. 2 that the distribution of feature

in each sleep stage is obviously different and the average

feature value in stage W is larger than those in other sleep

stages. With the deepening of sleep, the feature values from

S1 to S4 gradually decrease, and then the REM stage increase

again. These features are different in different sleep stages and

can be used for sleep stage staging.

The feature selection of the top 20 in the SEDFX20 data

set is shown in Fig. 3. In the figure, the abscissa represents

the feature, and the ordinate represents the information gain

score of the feature. It can be seen from Fig. 3 that relative

energy, mean amplitude and total power in Gamma and Beta

frequency bands play a significant role in classification. Also,

the HC and KFD features of IMF2, IMF3, IMF4, and IMF5

can effectively classify different sleep stages. The result of

feature selection shows that the Gamma frequency band can

effectively distinguish W, S1, and REM stages during sleep
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TABLE III
THE CONFUSION MATRIX OF SEDFX20 DATABASE

Alg./Exp. W S1 S2 S3 S4 REM

W 18835 61 56 2 2 69
S1 376 331 219 2 4 427
S2 125 51 6807 173 18 290
S3 24 2 487 625 175 6
S4 9 0 42 178 733 0

REM 106 55 451 4 4 2843

TABLE IV
THE CLASSIFICATION RESULTS ON SEDFX20 DATABASE

Recall Precision F-Measure

W 0.990 0.967 0.978
S1 0.244 0.662 0.356
S2 0.912 0.844 0.877
S3 0.474 0.635 0.543
S4 0.762 0.785 0.773

REM 0.821 0.782 0.801

ACC:0.898 WF1:0.889 Kappa0.8318

stage staging. To obtain the number of feature selections, the

feature set is set as an empty set, and the features are added

into the feature set one by one according to feature ordering.

The classification accuracy rate, Kappa coefficient, and WF1

value are obtained in turn. As shown in Fig. 4, when the feature

number is 50, each classification index reaches the maximum

value.

B. Classification results

After feature selection, the confusion matrix results of the

six-stage sleep stages of the SEDFX20 data set are shown

in Table III.The recall rate, accuracy rate, and F1 score of

each sleep stage in SEDFX20 are shown in Table IV. The

average accuracy rate of sleep staging is 0.898, the score of

WF1 is 0.889, and the Kappa coefficient is 0.8318.The high

Kappa coefficient shows that the method in this paper is highly

consistent with the expert score.

REM stage recognition is usually a difficult task in the

stages of sleep. In the diagnosis of REM sleep behavior

disorder, the REM stage must be accurately classified. In

this paper, REM achieves a high recall rate of 0.821. The

classified recall rate of W, S2, S4, and REM sleep stage is

above 0.762, and the precision rate is above 0.782. S1 is a

transitional stage from awakening to sleep, which accounts

for a small proportion and is easy to be misclassified into

other sleep stages, with the lowest classification accuracy.

The experimental results show that the time-frequency feature

analysis method has high accuracy in dividing the REM stage

and is also suitable for mixed data sets.

C. Classification performance of time domain and frequency
domain features

The 50 features selected contain 26 time-domain features

and 24 frequency-domain features in the SEDFX data set.

The sleep staging results of time-domain, frequency-domain,

Fig. 5. Comparison of time domain and frequency domain features.

and time-frequency domain features are shown in Fig. 5.The

classification accuracy, WF1 score, and Kappa coefficient

of time-frequency features are increased compared with the

results of using time-domain features and frequency-domain

features alone. For example, the Kappa coefficient increases

from 0.8024, 0.8244 to 0.8318. The sleep staging method com-

bining time-domain features and frequency domain features is

superior to the method using only time domain or frequency

domain features.

D. Computation cost

All the experiments have been conducted using the Intel

Core i7-6700 processor (3.40 GHz) with 16 GB RAM. The

software is Matlab R2017a on Windows 7 OS. The signal

decomposition and 50 features extraction for a 30-s EEG

epoch cost 0.826s in average. The classifier model takes 19.54

s to build. The 10-fold cross-validation for 20 people takes 175

s. When the data of a new subject comes to test, it takes 9.75 s

to obtain the features and classify. The SC data set records the

subject’s 24-hour data, 50 features require 1M storage space

in average. ST data set records sleep data of the subject at

night, 50 features require 0.46M storage space in average.

V. DISCUSSION

To evaluate the efficiency of the proposed method, the clas-

sification accuracy and Kappa coefficient of different dataset

are compared with those of other existing methods. The results

are depicted in Tables V and VI. The winning classification

results are highlighted. It is observed that the performance of

the proposed method is better than the other methods.

A. Comparison to other single-channel EEG methods

The same data set, the same single-channel EEG signal,

and the 5-stage sleep staging standard are adopted, so the

results of the literature [25]- [29] are directly cited. As shown

in Table V, on the SEDF data set, literature [25] adopts the

tunable Q-factor wavelet transform in the decomposition of

EEG signal, which is limited by three parameters, namely

quality factor, over-sampling rate, and decomposition layer

number. In [26], the iterative filtering method is used to

decompose EEG signals to determine the amplitude envelope
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TABLE V
THE OVERALL PERFORMANCE FOR FIVE-CLASS CLASSIFICATION COMPARED WITH STATE-OF-THE-ART WORKS ON SEDF, SEDFX20, AND

SEDFX20* DATABASE BASED ON SINGLE-CHANNEL EEG SIGNALS

Database Authors Dataset Size Channels Method ACC Kappa

SEDF Hassan et al.[25] 8 subjects EEG TQWT+ Bagging 0.908 0.854
SEDF Sharma et al.[26] 8 subjects EEG Iterative filtering+ Naive Bayes 0.911 0.862
SEDF Proposed approach 8 subjects EEG Time-frequency domain decomposition+ Random forest 0.914 0.858

SEDFX20 Jiang et al.[27] 20 subjects EEG Multimodal decomposition+ Random forest 0.878 0.810
SEDFX20 Proposed approach 20 subjects EEG Time-frequency domain decomposition+ Random forest 0.898 0.832

SEDFX20* Supratak et al.[28] 20 subjects EEG CNN+bidirect-LSTM 0.798 0.720
SEDFX20* Paisarnsrisomsuk et al.[29] 20 subjects EEG CNN+generator and discriminator network 0.825 0.76
SEDFX20* Jiang et al.[27] 20 subjects EEG Multimodal decomposition+ Random forest 0.914 0.831
SEDFX20* Proposed approach 20 subjects EEG Time-frequency domain decomposition+ Random forest 0.932 0.863

TABLE VI
THE OVERALL PERFORMANCE FOR FIVE-CLASS CLASSIFICATION COMPARED WITH STATE-OF-THE-ART WORKS BASED ON MULTI-CHANNEL SIGNALS

Database Authors Dataset Size Channels Method ACC Kappa

SEDF Ozal et al.[30] 8 subjects EEG, EOG 1D-CNN 0.912 -
SEDF Proposed approach 8 subjects EEG Time-frequency domain decomposition+ Random forest 0.914 0.858

SEDFX20* Huy Phan et al.[31] 20 subjects EEG, EOG CNN+Gated Recurrent Units 0.823 0.75
SEDFX20* Sokolovsky et al.[32] 20 subjects EEG, EOG CNN 0.81
SEDFX20* Proposed approach 20 subjects EEG Time-frequency domain decomposition+Random forest 0.932 0.863

UCD Yuan et al.[33] 25 subjects EEG, EOG, EMG multi-view convolutional encoder+hybrid attention mechanism 0.733 -
UCD Langkvist et al.[34] 25 subjects EEG, EOG, EMG sparse auto-encoder+LSTM 0.777 -
UCD Proposed approach 25 subjects EEG Time-frequency domain decomposition+Random forest 0.744 0.662

and instantaneous frequency function of signals. This method

obtained a higher Kappa coefficient, but its accuracy is lower

than that of this method. On the SEDFX20 data set, Literature

[27] uses the hidden markov model to modify the sleep staging

results, which add extra computational burden. On SEDFX20*

data set, the results of sleep staging accuracy and Kappa

coefficient of PZ-OZ channel EEG signals using CNN and

bidirectional LSTM in [28] are far lower than that of the

method presented in this paper. In [29], CNN is used to

exact representation features and generator and discriminator

network is used for automatic sleep stage scoring. To sum up,

the time-frequency domain feature analysis method combining

EMD and frequency domain decomposition proposed in this

paper is not limited by parameters and has achieved good

classification results on SEDF, SEDFX20, and SEDFX20*

data sets.

B. Comparison to other multi-channel signal methods
The comparative analysis of multi-channel signal sleep stag-

ing methods is shown in Table VI. In [30], the sleep staging

accuracy of EEG signals using a one-dimensional convolution

neural network is 0.912. The time-frequency domain feature

combination method in this paper only uses a single-channel

EEG signal, and the sleep staging accuracy is 0.914. On

SEDFX20* data set, literature [31] adopts the convolution

neural network and the gated circulation unit’s sleep staging

method, literature [32] adopts the convolution neural network’s

sleep staging method and the accuracy of sleep staging based

on EOG and EEG signals is lower than that of the single-

channel EEG sleep staging method in this paper. In [33], [34],

the UCD data set has the highest sleep staging accuracy of 0.78

by using EEG, EOG, and EMG signals. In addition to the EEG,

the addition of EOG and EMG signals cannot significantly

improve the performance of sleep staging. This may be caused

by the loss of effective information of the added signal due to

the phase difference of the different signals. Compared with

the multi-channel sleep staging method, the accuracy of multi-

channel sleep staging can be achieved or nearly achieved by

using only one channel EEG signal, which is more conducive

to the realization of the family sleep monitoring system.

VI. CONCLUSION

In this paper, an automatic sleep staging method of single-

channel EEG signals is proposed. The time domain features

extracted by EMD and frequency domain features are used to

improve the accuracy of the automatic staging of sleep stage.

Experimental results show that the proposed algorithm is close

to the accuracy of multi-channel sleep staging and better than

other single-channel EEG sleep staging methods with the same

data set. The 50 features automatic sleep staging system has

the advantages of less time consuming and less storage space.

In the future, the deep learning method will be used to learn

signal features and classify them, and an automatic sleep stage

staging system will be realized.
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