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Abstract—As the parallel scale of HPC applications repre-
sented by earth system models becomes larger and the computing
cost becomes higher, the performance of HPC applications is
increasingly critical. Profiling HPC applications accurately helps
to model the applications and find the performance bottlenecks.
However, due to the complexity of HPC applications, the diversity
of programming languages, the differences of individual pro-
gramming habits, and multiple architectures, accurate profiling
becomes very tough. In this paper, we propose LPerf: a low-
overhead and high-accuracy profiler for HPC applications. To
reduce the profiling overhead and improve the profiling accuracy,
we propose a preprocessing method which can automatically
instrument with tunable granularity thus significantly reducing
the run-time overhead of profiling, an aggregated caller-callee
relationship which is used to locate relationship of functions
efficiently, and a profiling-aware method which can precisely
calculate running time of functions. The experimental results
show that the error rate of profiling reaches 0.02%, and the
overhead reaches 1.6%, in the earth system model named CAS-
ESM. Compared with the baselines, the precision, accuracy, and
overhead of LPerf have reached the state of the art.

Index Terms—LLVM, instrumentation, profiling, performance
modeling

I. INTRODUCTION

The performance of HPC applications becomes more crucial

due to the increasing complication of tasks. Complicated ap-

plications need to be run on the high-performance computing

platform because the platform utilizes parallel technology to

accelerate computation. However, even though the computing

power of high-performance computing platforms is develop-

ing rapidly, the platform utilization of HPC applications is

decreasing. The peak performance of HPC applications does

not even reach 20% of the peak performance of the platforms.

This shows that the performance of HPC applications has

great potential for improvement. An important indicator of the

performance of applications is running time. The reduction
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of running time not only makes some time-critical tasks

possible, but also lowers the computing cost. Therefore, the

reduction of the running time of the applications is a matter

of great concern. Accurate profiling is helpful for performance

modeling and mining performance bottlenecks. However, due

to the increasing complexity of tasks, accurate profiling is a

huge hurdle. The difficulty of accurate profiling can be caused

by many different factors across many different levels from

complex operating systems to various code of applications. So,

how to accurately profile has become an important research

topic. In this paper, we propose LPerf for profiling HPC

applications which can significantly lower the overhead and

enhance the accuracy. For the HPC applications with multiple

MPI communicators, a three-level profiling scheme is pro-

posed to distinguish and profile different model components

according to the MPI communicators. The major contributions

of this paper are summarized as follows.

• A preprocessing method which can automatically instru-

ment with tunable granularity thus significantly reducing

the run-time overhead of profiling during the compilation

stage is addressed, to lower the overhead and improve the

applicability of LPerf.

• An aggregated caller-callee relationship which is used to

locate relationship of functions efficiently is designed.

The aggregated caller-callee relationship reduces memory

and time overhead, and the red-black tree is adapted to

further accelerate locating.

• To obtain exclusive time of functions, a profiling-aware

method which can precisely calculate running time of

functions is proposed. This method can distinguish the

running time of functions with probes and without probes.

The rest of the paper is organized as follows. Section 2 lists

preliminaries for profiling and LLVM. Section 3 describes the

difficulties and challenges of profiling. Section 4 introduces the

details of implementation. Section 5 analyzes the experimental

results. Section 6 concludes the paper.
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II. PRELIMINARIES FOR PROFILING AND LLVM

A. Preliminaries for Profiling

To accurately profile, there have been some tools, and most

of them propose methods of profiling by instrumentation.

Instrumentation can be performed at different stages. One is

to instrument at the stage of object code [7]. For this method,

performing analysis to record the location of instrumentation

is necessary. However, due to the incomplete grammatical

and semantic information in the object code, the locating and

analysis of programs are inaccurate occasionally [6]. The other

is to instrument at the stage of source code. This method

requires lexical, syntax, and semantic analysis of source code,

and the analysis requires a large amount of work and has some

modifications for different programming languages [18]. Due

to the complicated analysis of source code, this method is not

widely applicable.

At the stage of object code, there are some classic tools. The

gprof is a profile tool of GNU for C and Fortran applications

which is widely applied to performance analysis [15]. It has

the ability to record running time of functions, but the timing

result is inaccurate occasionally [9] [28]. The GPerftools

proposed by google can obtain high-accuracy profiling results,

but barely support the profiling of MPI functions.

At the stage of source code, there are also some powerful

tools. The LIKWID designed by Jan Treibig can record the

running time of each thread, but it cannot record the running

time of MPI functions, and can only be applied to the x86

platform [26]. The Timemory designed by Jonathan R. Madsen

can record the running time of MPI functions, but only

support C++ applications [21]. The HPCtoolkit designed by

Adhiantol can support the applications written by many kinds

of languages, but the timing result is inaccurate occasionally

[1]. The TAU (Tuning and Analysis Utilities) designed by

Sameer is a comprehensive toolkit for performance analysis

of applications, which reaches the state of the art. However,

the problem of overhead hinders TAU [25].

LLVM releases a new chance to perform instrumentation at

the stage of intermediate files (IR files) to avoid the defects

of instrumentation at the stage of object code and source code

[17].

B. Introduction to LLVM

LLVM is a collection of modular, reusable compilers and

tools. Clang and Flang are compilers that support C and For-

tran applications in LLVM. Together with LLVM, they form

a complete tool chain, support multiple operating systems and

hardware architectures, and can replace the GCC compilation

system [24].

The Pass framework of LLVM which is a supplement to

the compiler is an important part of LLVM [8]. They have

the ability to analyze, optimize and transform the intermediate

files (IR files). When the user-defined Passes are implemented,

they will be compiled into a dynamic-link library through

specific compilation instructions, and the optimizer of LLVM

is used to make the dynamic-link library to process the IR files

generated by the source file through LLVM [29]. Sequentially,

analysis, optimization or transformation to the IR file will

be implemented and a new IR file will be generated. By

performing instrumentation at the stage of IR files, we can

avoid not only the occasional inaccuracy of locating and

analyzing program caused by performing instrumentation at

the stage of object code, but also the complicated analysis

caused by performing instrumentation at the stage of source

code [14].

To reduce the overhead and improve the accuracy, a profiler

based on LLVM referred as to LPerf is proposed, which

can preprocess and automatically instrument with tunable

granularity, locate call relationships of functions with low

redundancy, and computing the running time of functions with

profiling-aware [2].

III. CHALLENGES AND OVERVIEW OF LPERF

In this section, we elaborate the challenges and introduce

the overview of LPerf.

A. Challenges

To record the running time of functions, it is necessary

to insert probes into the entry and exit of functions. As the

structures of the applications are very complicated, it is tough

to automatically instrument [20]. Some existing tools perform

manual instrumentation instead of automatic instrumentation.

Profiling precisely is also a hurdle because the running time

of some functions are too small to be recorded. However, if

these functions are called many times, the sum of the running

time of these functions will be very large [16]. If the total

running time of these functions cannot be recorded, it will

cause a huge error to the profiling result.

Due to multi-level calls, the running time of a function

includes not only its own running time, but also the running

time of its subfunctions [10]. To accurately analyze function

performance, exclusive time, i.e., its own running time, should

be focused. Only inserting probes into the entry and exit

of functions cannot obtain exclusive time of functions [12].

Therefore, how to achieve exclusive time of a function is a

challenge.

Call relationships are the key to achieve exclusive time.

Complete call relationships are large and redundant thus

leading to locating insufficiently [27]. Locating the call re-

lationships is inevitable as the function with the same call

relationships may appears many times and the redundant call

relationships hinder locating. Briefly, the probe will bring

overhead to the source program. On the one hand, the call

relationships will increase the overhead of memory. If the

scale of application is very large, the call relationships will

become a great burden in the memory. On the other hand,

the locating will increase the overhead of running time. If the

running time of the probe cannot be reduced, the running time

of the instrumented applications will increase dramatically [3].
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B. Overview of Proposed LPerf

To profile the large-scale HPC applications, such as CAS-

ESM on the specified scientific computing platform, LPerf is

designed. The computing platform is equipped with X86-based

Hygon CPUs without GPUs or DCUs. Considering the similar

performance of CAS-ESM of MPI version and MPI+OpenMP

version, to pursue low overhead, high accuracy and precision,

LPerf focuses on the resources assignment among processes.

Generally, LPerf includes three phases of preprocessing,

running and analyzing, as shown in Figure 1.

Fig. 1. Overall flow of the proposed LPerf

Before the application runs, the IR files of applications are

generated and a Pass is used to scan the IR file through

LLVM. After the scan is completed, we obtain the names

and numbers of all user-defined functions including the MPI

Wrapper functions.

Especially, to take over the built-in MPI functions, MPI

Wrapper technology is used to encapsulate the built-in MPI

functions, whose names begin with “MPI ”. According to the

MPI standard, each MPI operation can be implemented by the

functions beginning with “MPI ” and “PMPI ”. Considering

this feature, a set of MPI Wrapper functions with the same

names as the built-in MPI functions is created. In the MPI

Wrapper functions, PMPI functions are called to implement

the specific MPI operation. Through MPI Wrapper technol-

ogy, the MPI Wrapper functions take over the built-in MPI

functions.

Then, to generate an instrumented intermediate file, the

corresponding function numbers and starting probe after the

entry of functions, and the ending probe before the exit of

functions are inserted into the functions by the other Pass.

After that, we transform the instrumented intermediate file into

an executable file through LLVM.

When the application is running, the starting probe is used

to record two timestamps. The first is the starting time of the

running time of the function excluding the probe. The second

is the starting time of running time of the function including

the probe. Besides, the function number is also recorded.

The ending probe is used to record the call relationships of

functions, calculate the running time of the function, accumu-

late the number of calls and running time of functions. All

the information will be recorded in each process. Before the

application stops, the customized function inserted at the end

of the MAIN function will write the running information in

memory into profiling result files on disk.

After the application runs, LPerf traverses and calculates the

profiling result files of the selected process which usually is

rank 0, to obtain the exclusive time of a function by subtracting

the sum of the running time of subfunctions from the running

time of the function according to Equation 1. Figure 2 shows

the components of the running time of functions. Finally, LPerf

restore the function number of each function to the function

name. The time complexity of LPerf is O(nlogn).

Te = Tr −
∑

Trs (1)

where Te is the exclusive time of a function, Tr is the

running time of the function, Trs is the running time of one

subfunction of the function.

Fig. 2. The components of running time of functions

IV. METHODOLOGY

In this section, we present the implementation details of

the preprocessing method which can automatically instrument

with tunable granularity thus significantly reducing the runtime

overhead of profiling, the aggregated caller-callee relationship

which is used to locate call relationships of functions effi-

ciently, and the profiling-aware method which can precisely

calculate running time of functions.

A. Preprocessing and Automatically Instrumenting with Tun-
able Granularity

LPerf prefetches the functions information and instruments

automatically at the stage of compilation. Figure 3 shows the

overall flow of preprocessing and instrumenting.

LLVM frontend, such as Clang and Flang, transforms the

source file into the intermediate file (IR file). Optimizer

modifies the IR file by Pass Framework [4]. In this paper,

two customized Passes which extract function names from IR

files and instrument IR files respectively are implemented. The

former is used to obtain the function names and encode them,

which helps to speed up the functions locating. The latter is
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Fig. 3. Overall flow of the preprocessing and instrumenting

used to insert the function number and starting probe after

the entry of functions and the ending probe before the exit

of functions. After that, LPerf transforms the instrumented IR

files into the object files through the LLVM backend. Figure

4 describes the position and content of instrumentation.

Fig. 4. The position and content of instrumentation

Furthermore, for performance modeling, according to Oc-

cam’s razor principle, if the predictive accuracy of the two

models is similar, a simpler model should be used. Even

with a smaller number of features, the approximate predictive

accuracy can also be obtained. If the running time of some

functions with a few instructions are ignored, there will be few

impacts on the results of performance modeling. To balance

the overhead and accuracy, LPerf is designed to instrument

with tunable granularity. When the customized Pass is used

to scan and obtain the name of a user-defined function, the

number of instructions of the functions in the IR file will be

counted. When instrumenting through the other customized

Pass, users can determine that the functions whose numbers

of instructions in IR files are lower than a user-defined

threshold are not instrumented to reduce the overhead for

performance sampling. Therefore, users can balance precision

and efficiency by themselves.

B. Efficiently Locating Call Relationships with Low Redun-
dancy

Recording the call relationships of functions according to

source code possibly misses the call relationships caused

by the function pointer. Therefore, LPerf records the call

relationships of functions in the starting and ending probes

instrumented at the stage of compilation during runtime. This

method has the advantage of recording all the call relationships

but brings more overhead to the profiler. To diminish the

negative impact, an efficient traversal algorithm to locate call

relationships of functions with low redundancy is required.
To obtain the exclusive time, the call relationships and

running time of functions are required to record. The call

relationship from the main function to the current function

is defined as complete call relationships. However, complete

call relationships of functions will generate a large redundancy

and lead to a large memory overhead. Meanwhile, when a

function with the same call relationship is called for the second

time, locating the function to record the running time will be

slowly in probe. Therefore, the caller-callee relationship of the

current function and the caller function is recorded instead of

the complete call relationships. LPerf reservers the running

time of functions and running time of subfunctions. By the

caller-callee relationship, the running time of the function ex-

cluding the running time of subfunctions will be calculated and

obtained. Actually, the caller-callee relationship is regarded as

the primary key. Due to the decrease of redundancy, locating

the call relationships and recording the running time of the

functions become dramatically fast. The design of aggregated

caller-callee relationship not only reduces memory overhead,

but also enables faster localization. To further speed up the

traversal procedure, the red-black tree is adaptive to store call

relationships. The detail of the red-black tree is shown in

Figure 5. In addition, each process will maintain a red-black

tree and record the running time of functions. Generally, the

profiling result of rank 0 is selected to analyze.

NIL

NIL NIL NIL

NIL NIL

current 
function ID

parent 
function ID

running 
time of 

function 
excluding 

probes

running 
time of 

function 
including 

probe
called times

NIL

Fig. 5. The red-black tree adapted in the traversal algorithm

C. Profiling-aware Method of Calculating the Running Time
of Functions

Although we have proposed some methods to reduce over-

head, the overhead caused by instrumentation is still unavo-

idable [11]. To improve the accuracy of profiling, the profiling-

aware method of calculating the running time of functions is

proposed.
As the running time of the probe will be recorded and

affect the accuracy of the exclusive time of a function, the

running time of the starting probe and ending probe should

be subtracted from the exclusive time of a function [22].

The precise exclusive time is the running time of functions

excluding the probe subtract the sum of the running time of

subfunctions including the probe.
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To obtain the running time of functions including the probes,

the timestamp recorded at the end of the ending probe subtracts

the timestamp recorded at the beginning of the starting probe.

To obtain the running time of function excluding the probes,

the timestamp recorded at the beginning of the ending probe

subtract the timestamp recorded at the end of the starting

probe. Figure 6 shows the components of the running time

of functions.

Fig. 6. The components of running time of functions

Additionally, to improve the precision of profiling, the

“rdtsc” which is a system timer with low overhead is used to

record the running time at cycle level. During the running time

of instrumented applications, the caller-callee relationships and

two kinds of running time will be recording by starting and

end probes, and the running information will be stored into the

temporary files on disk before the application ends [5]. At the

last stage which is data processing, the precise exclusive time

will be obtained by subtracting the running time of probes and

stored into the profiling files.

D. Implementation of Starting and Ending Probe

The starting and ending probe record four timestamps, i.e.,

two timestamps of entering and exiting the probe and two

timestamps of entering and exiting the probe. Considering

the multi-level function calls, the mentioned timestamps are

stored in the stack with running time of probes and the stack

without running time of probes respectively. Besides, a stack

with function numbers is required to store function numbers.
1) Starting probe: The starting probe records two times-

tamps of entering and exiting the probe. The first is the starting

time of the running time of the function excluding the probe.

The second is the starting time of running time of the function

including the probe [5].

The corresponding pseudocode is shown as Algorithm 1.

In algorithm 1, starting time with probe is the starting time

of the running time of the function including the probe.

running time stack is the stack with the running time of

probes.function numbers stack is the stack with function

numbers. starting time without timer is the starting time of

the running time of the function excluding the probe.
2) Ending probe: The ending probe records two timestamps

of entering and exiting the probe. The first is the ending time

of the running time of the function excluding the probe. The

second is the ending time of the running time of the function

including the probe.

Pop the timestamp from the stack without running time of

probes, which is the second timestamp of the starting probe. To

Algorithm 1 Starting Probe.

Output: starting time without probe;

1: record the current time in starting time with probe
2: put starting time with timer into running time stack
3: put the function number into function numbers stack
4: record current time in starting time without probe

obtain the running time of function excluding the starting and

ending probes, the first timestamp of the end probe subtract

the second timestamp of the starting probe [19].
Then, the ending probe pops the top 2 function numbers

in the stack with function numbers, which are the current

function number and the caller function number.
After that, pop the stack with the running time of probes,

which is the first timestamp of the starting probe. To obtain

the running time of function including the starting and ending

probes, the second stamp of the ending probe subtract the

first timestamp of the starting probe [30]. Finally, the current

function number and the caller function number are set as the

primary key to find whether the function has been recorded in

the red-black tree of function information.
If it exists, accumulate and update the number of calls, the

running time of the function excluding the probe, and the run-

ning time of the function including the probe respectively. If

it does not exist, insert the call relationships and running time

of functions into the red-black tree of function information.
The corresponding pseudocode is shown as Algorithm 2.

In Algorithm 2, ending time excluding probes is the ending

time of the function excluding probes. running time excluding
probes is the running time of function excluding probes.

running time including probes is the running time of function

with probes. ending time including probes is the ending time

of the function including probes. called times is the times of

the current function called by the caller function.

V. EXPERIMENTS

To verify the effectiveness of LPerf, a series of experiments

are designed. A benchmarking application is selected as the

test application to verify that LPerf can accurately measure the

running time of application with less overhead, and an earth

system model is selected as the test application to verify the

effectiveness of LPerf for complex applications [23].

A. Setup
1) Experimental platform: The Hygon cluster which has

600 computing nodes is selected as the experimental platform.

The specific configuration of the Hygon cluster is shown in

Table 1. Every computing node is equipped with an X86-based

Hygon CPU which integrates 32 cores. The parallel storage

system of the Hygon cluster consists of 4 Opara nodes and 36

Ostor nodes. And, Intel OPA 100Gb is utilized by Hygon as

a computing network.
In our experiments, 64 processes are used. In addition,

to ensure the fairness of comparison with the baselines, the

threshold of instrumentation granularity is fixed at one, that

is, all functions are profiled.
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Algorithm 2 Ending Probe

Input: starting time without probe;

1: record current time in ending time of the function excluding probes
2: get running time excluding probes by subtracting starting time without probe from ending time excluding probes
3: get top node in function numbers stack which is function number

4: pop top node in function numbers stack
5: get top node in function numbers stack which is caller function number

6: pop top node in function numbers stack
7: record current time in ending time of the function including probes
8: get running time including probes by subtracting starting time including probes from ending time of including-
9: probes

10: while (find the child-parent call relationship in the red-black tree of function information) do
11: if the child-parent call relationship is found then
12: accumulate called times, running time with timer, running time excluding probe respectively

13: else
14: insert the running information of the current function into the red-black tree

15: end if
16: end while

TABLE I
SETUP OF HYGON CLUSTER

Computing cluster 600 computing nodes
Storage cluster Sugon parastro300 parallel storage system, including 4 opara and 36 osteor nodes

Network system Intel OPA 100GB dedicated computing network

2) Test applications: Experiments are conducted on NAS

Parallel Benchmark (NPB) and CAS-ESM (Chinese Academy

of Sciences Earth System Model) respectively. The NPB is

a set of parallel scientific computing applications used to

evaluate the performance of supercomputers. It is an ap-

plication to solve computational fluid dynamics problems,

including 5 kernel applications and 3 pseudo applications. For

example, SP is a pseudo application and it is used to solve

the problem of the five-diagonal equation. The computation

of NPB is predefined and divided into different categories.

Some experiments are conducted on SP which is written by

Fortran as the test. application [13].

In addition, the earth system models are also representative

parallel scientific computing applications, which are mainly

used to quantify the laws of the earth and the relationships

between human activities and earth changes. Among them,

CAS-ESM which is written by C and Fortran is an advanced

and widely used earth system model released by the Chi-

nese Academy of Sciences. CAS-ESM integrates independent

model components, such as atmospheric, ocean, sea ice, land,

dynamic global vegetation, atmospheric aerosol and chemistry

model components. These model components are coupled with

a coupler to form a complex earth system which has a huge

amount of computation.

3) Baselines: Gprof is a profile tool installed in most

compilers and widely used for performance analysis of C and

Fortran applications. Additionally, TAU is a comprehensive

profiling and tracing toolkit for performance analysis of par-

allel applications, which reaches the state of the art.

4) Metrics: The performances of gprof, TAU and LPerf are

evaluated from precision, error rate and overhead. Precision is

a critical metric for profiling because an unprecise profiler

may miss the functions with short running time but large

accumulated running time. Error rate indicates the gap between

the profiling result and the built-in timing result. Overhead

means additional running time caused by the profiler. Error

rate and overhead are formulated as follows respectively.

Terror = |Tprofiling − Toriginal| /Toriginal (2)

Toverhead = |Twithprofiler − Toriginal| (3)

where Tprofiling, Toriginal, Twithprofiler are defined as the

profiling result, the built-in timing result, and the running time

with profiler respectively. Especially, Twithprofiler is different

from Tprofiling which excludes the running time of profiler.

B. Validation for Benchmarking Applications

1) The Precision of Profiling NPB: To test the validation of

LPerf on benchmarking applications, experiments are designed

to use gprof, TAU and LPerf to obtain the running time of

some functions in SP of NPB. As too many functions in SP to

illustrate, the representative functions obtained by gprof, TAU,

and LPerf are selected, as showed in table 2. Experimental

results show that gprof cannot record the running time of ADI,

set constants , and probe read, TAU can record the running

time of ADI, set constants, and LPerf can record the running

time of all functions. Overall, gprof could not record the
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TABLE II
THE RUNNING INFORMATION OF FUNCTIONS IN NPB

Gprof Function name Called times Running time(s)

adi 1001 0.00

set constants 1 0.00

timer read 1 0.00

TAU Function name Called times Running time(s)

adi 1001 225.82

set constants 1 0.002

timer read 1 0.00

LPerf Function name Called times Running time(s)

adi 1001 110.28

set constants 1 0.00156

timer read 1 60 ∗ 10−9

running time of the functions whose single running time is

small; TAU could not record the running time of the functions

whose single running time is small and called times is small;

LPerf could record the running time of all the functions.

Imprecise profiling results obtained by gprof cause that

running time of some called functions is recorded as 0. This

leads to that the running time of functions whose running time

is small but called many times cannot be recorded. However,

the sum of the running time of these functions could be

huge. If their running time cannot be recorded, it could cause

significant errors in profiling results. LPerf can avoid this

problem by using “rdtsc” which is a system timer with low

overhead to obtain cycle-level running time of functions.

2) The Accuracy of Profiling NPB: The amount of compu-

tation of SP of NPB could be tuned by predefined sizes and

iterations. The experiments are performed on SP with different

sizes varying from 300 to 500 and different iterations varying

from 3000 to 5000. 5 sets of example data of different sizes

and iterations are obtained. As the error rate of gprof, 25%,

is two orders of magnitude higher than TAU and LPerf. To

show the results distinctively, we only list the results of TAU

and LPerf in Figure 7 and Figure 8. The error rate of LPerf

is lower than TAU at the size of 300, 400 and 500 and at the

iteration of 3000, 3500 and 5000.

Fig. 7. Error rate of LPerf in different sizes

Fig. 8. Error rate of LPerf in different iterations

The experimental results show that the error rate of running

time obtained by LPerf is comparable to TAU, and is much

lower than gprof. In the best case, the error rates of gprof, TAU

and LPerf are 20.4%, 0.05% and 0.03% respectively. Because

of the profiling-aware method of calculating the running time

of functions, high accuracy of LPerf is obtained.

3) The Overhead of Profiling NPB: The experiments are

performed on SP with different sizes varying from 300 to 500

and different iterations varying from 3000 to 5000. 5 sets of

example data of different sizes and iterations are obtained. Due

to the overhead of gprof, 0.1%, is much lower than TAU and

LPerf. To show the results distinctively, we only list the results

of TAU and LPerf. Figure 9 and Figure 10 are the overhead

of running time recorded by TAU and LPerf.

Fig. 9. Overhead of LPerf in different sizes

Fig. 10. Overhead of LPerf in different iterations

The experimental results show that the overhead of running

time obtained by LPerf is significantly lower than TAU. In the
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best case, the overhead of gprof, TAU and LPerf is 0.1%, 89%

and 14%. Because of efficiently locating call relationships with

low redundancy and automatically instrumenting with tunable

granularity, low overhead of LPerf is obtained.

C. Validation for Large-scale Applications

1) The Profiling Results For CAS-ESM: To test the vali-

dation of LPerf for large-scale applications, experiments are

designed to record the running time of functions in CAS-

ESM through LPerf. For CAS-ESM, a three-level profiling

scheme is proposed to distinguish and profile different model

components according to the MPI communicators. That is,

LPerf measures performance at the function level first, then

profiles different components in an application according to

the MPI communicators, and finally component performance

is aggregated to obtain the overall performance. In the case of

limited computing resources, it is essential to assign comput-

ing resources of different model components.

Due to gprof and TAU can not profile the model components

of CAS-ESM, we only test the performance of LPerf in

the following experiments. Figure 11 and Figure 12 show

the error rate and overhead of profiling results for ATM

model component which is the most time-consuming model

component in CAS-ESM. These experiments are conducted

at the size of 5,10,15,20 days for CAS-ESM. Experimental

results demonstrate that LPerf can maintain high precision and

accuracy with low overhead when it is applied to large-scale

applications. In the best case, the error rates of ATM and CAS-

ESM are 0.02% and 0.03% respectively, and the overhead of

ATM and CAS-ESM are 1.6% and 2.3% respectively.

Fig. 11. Error rate of profiling CAS-ESM

2) The Effect of Tuning Granularity: To reduce the over-

head of profiling, the method of instrumenting with tunable

granularity is adopted. Ignoring to profile some functions with

a few instructions can reduce the time overhead of LPerf. The

functions whose number of instructions in IR files are lower

than a user-defined threshold are not instrumented. Figure

13 shows the results of tuning the granularity. Experimental

results show that the running time of CAS-ESM measured by

LPerf can be effectively reduced by tuning the granularity.

D. Comprehensive Comparison

Table 3 summarizes the attribute of gprof, TAU and LPerf.

From the Table 3, it is obvious that the precision and accuracy

Fig. 12. Overhead of profiling CAS-ESM

Fig. 13. Trend of running time after tunning the granularity

of LPerf can reach the state of arts with low overhead. By

tuning the granularity of instrumentation, the running time of

the applications measured by LPerf can be reduced effectively.

VI. CONCLUSION

In this paper, LPerf is proposed to profile HPC applications

with low overhead and high accuracy. Major contributions are

listed as follows. (1) To lower the time overhead and improve

the applicability of LPerf, preprocessing and automatically

instrumenting with tunable granularity during the compilation

stage are addressed. (2) To reduce the time and memory over-

head, an aggregated caller-callee relationship which is used to

locate call relationships of functions efficiently is designed.

(3) To obtain the exclusive time of functions precisely, a

profiling-aware method of calculating the running time of

functions is proposed. Especially, for the HPC applications

with multiple MPI communicators, our methods also support

modeling different components in an application according to

the MPI communicators. It is essential to schedule the number

of processes among the components to fully utilize the limited

computation resources for HPC applications. The experimental

results manifest that the precision, accuracy, and overhead of

LPerf have reached the state of the art. In the future, the

analysis of LPerf will be enhanced and performance modeling

based on LPerf will be conducted.
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[5] Lorenz Braun and Holger Fröning. Cuda flux: A lightweight instruction
profiler for cuda applications. In 2019 IEEE/ACM Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS), pages 73–81. IEEE, 2019.

[6] Jon Calhoun, Luke Olson, and Marc Snir. Flipit: An llvm based fault
injector for hpc. In European Conference on Parallel Processing, pages
547–558. Springer, 2014.

[7] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit
Agarwal, and Lorenzo Alvisi. Obladi: Oblivious serializable transactions
in the cloud. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), pages 727–743, 2018.

[8] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from
Linux Kongress, volume 18, pages 1–42, 2010.

[9] Jay Fenlason and Richard Stallman. Gnu gprof. GNU Binutils. Available
online: http://www. gnu. org/software/binutils (accessed on 21 April
2018), 1988.

[10] Keke Gai, Yulu Wu, Liehuang Zhu, and Meikang Qiu. Privacy-
preserving data synchronization using tensor-based fully homomorphic
encryption. In 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pages 1149–1156. IEEE, 2018.

[11] Keke Gai, Yulu Wu, Liehuang Zhu, Meikang Qiu, and Meng Shen.
Privacy-preserving energy trading using consortium blockchain in smart
grid. IEEE Transactions on Industrial Informatics, 15(6):3548–3558,
2019.

[12] Keke Gai, Yulu Wu, Liehuang Zhu, Lei Xu, and Yan Zhang. Permis-
sioned blockchain and edge computing empowered privacy-preserving
smart grid networks. IEEE Internet of Things Journal, 6(5):7992–8004,
2019.

[13] Keke Gai, Yulu Wu, Liehuang Zhu, Zijian Zhang, and Meikang Qiu.
Differential privacy-based blockchain for industrial internet-of-things.
IEEE Transactions on Industrial Informatics, 16(6):4156–4165, 2019.

[14] Peter Garba and Matteo Favaro. Saturn-software deobfuscation frame-
work based on llvm. In Proceedings of the 3rd ACM Workshop on
Software Protection, pages 27–38, 2019.

[15] Susan L Graham, Peter B Kessler, and Marshall K McKusick. Gprof: A
call graph execution profiler. ACM Sigplan Notices, 39(4):49–57, 2004.

[16] Yibo Guo, Qingfeng Zhuge, Jingtong Hu, Meikang Qiu, and Edwin H-
M Sha. Optimal data allocation for scratch-pad memory on embedded
multi-core systems. In 2011 International Conference on Parallel
Processing, pages 464–471. IEEE, 2011.

[17] Nikita Kataev. Application of the llvm compiler infrastructure to the
program analysis in sapfor. In Russian Supercomputing Days, pages
487–499. Springer, 2018.

[18] Peter Lammich. Generating verified llvm from isabelle/hol. In 10th
International Conference on Interactive Theorem Proving (ITP 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[19] Zhen Li, Ali Jannesari, and Felix Wolf. An efficient data-dependence
profiler for sequential and parallel programs. In 2015 IEEE International
Parallel and Distributed Processing Symposium, pages 484–493. IEEE,
2015.

[20] Gangzhao Lu, Weizhe Zhang, Hui He, and Laurence T Yang. Perfor-
mance modeling for mpi applications with low overhead fine-grained
profiling. Future Generation Computer Systems, 90:317–326, 2019.

[21] Jonathan R Madsen, Muaaz G Awan, Hugo Brunie, Jack Deslippe,
Rahul Gayatri, Leonid Oliker, Yunsong Wang, Charlene Yang, and
Samuel Williams. Timemory: Modular performance analysis for hpc.
In International Conference on High Performance Computing, pages
434–452. Springer, 2020.

[22] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,
and Jeffrey S Vetter. Nvidia tensor core programmability, performance
& precision. In 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 522–531. IEEE,
2018.

[23] Andre Merzky, Ming Tai Ha, Matteo Turilli, and Shantenu Jha. Synapse:
Synthetic application profiler and emulator. Journal of computational
science, 27:329–344, 2018.

[24] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. Cudaadvisor:
Llvm-based runtime profiling for modern gpus. In Proceedings of the
2018 International Symposium on Code Generation and Optimization,
pages 214–227, 2018.

[25] Sameer S Shende and Allen D Malony. The tau parallel performance
system. The International Journal of High Performance Computing
Applications, 20(2):287–311, 2006.

[26] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In 2010
39th International Conference on Parallel Processing Workshops, pages
207–216. IEEE, 2010.

[27] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J
Leung, Manuel Egele, and Ayse K Coskun. Online diagnosis of
performance variation in hpc systems using machine learning. IEEE
Transactions on Parallel and Distributed Systems, 30(4):883–896, 2018.

[28] Hui Zhang and Jeffrey K Hollingsworth. Data centric performance mea-
surement techniques for chapel programs. In 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 377–
386. IEEE, 2017.

[29] Lei Zhang, Meikang Qiu, Wei-Che Tseng, and Edwin H-M Sha. Variable
partitioning and scheduling for mpsoc with virtually shared scratch pad
memory. Journal of Signal Processing Systems, 58(2):247–265, 2010.

[30] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and
Xu Liu. Gvprof: a value profiler for gpu-based clusters. In 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 1263–1278. IEEE Computer Society,
2020.

1319


