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Abstract—To prolong the lifetime of unmanned aerial vehicle
(UAV) networks, this paper studies how to efficiently deploy
wireless static chargers (WSCs) in UAV networks (WDU). That
is, given a set of UAVs, determining the minimum number of
WSCs as well as the location of each WSC, so that UAVs
do not run out of energy during flight. We first formulate
WDU as an optimization problem, which is proved to be NP-
hard. Then to solve WDU, we propose the scheme of selecting
WSCs’ locations by transforming WDU into a binary integer
programming (BIP) problem (SLTB). In SLTB, we first propose
a novel area discretization method to reduce the solution space
of WDU, and then WDU is reformulated as a BIP problem that
can be easily solved by existing methods. Finally, experiments
are conducted to evaluate the performance of SLTB in terms of
reducing the number of WSCs.

Index Terms—UAV network, UAV charging, wireless charging,
charger deployment

I. INTRODUCTION

Due to the portability and flexibility of UAVs, multiple

UAVs are coordinated as a UAV network to execute tasks in

many fields [15], such as agriculture, military, transportation,

and so on. In UAV networks, the ground base station (GS)

plans the flight path of each UAV according to path planning

algorithms [27]–[29], and each UAV flies along its pre-planned

flight path to execute the pre-assigned task. The energy ca-

pacity of UAVs is limited [16], and once a UAV runs out of

energy, the task of the entire UAV network may fail.

To solve this problem, there are some works dedicated to

studying how to replenish energy for UAVs during the flight

[17], [18]. For example, some works attempt to replenish

energy for UAVs with natural energy [7], such as wind energy,

solar energy, and so on. To provide a stable energy supplement,

the contact-based ground charging platform is proposed [17],

in which UAVs need to suspend the task first, then land on

the ground charging platform to replenish energy, and finally

take off again to continue the task.

Motivations: The method of charging UAVs on the ground

charging platform has many drawbacks. Firstly, the deploy-

ment cost of the charging platform is very expensive [9].

Secondly, charging on the platform is inefficient. This is

because UAVs that need to replenish energy have to land first

and wait until the charging is completed. Therefore, when

there are many low-energy UAVs, the queue of requesting

charging may become longer and the time for UAVs to wait

for charging becomes longer.

In recent years, wireless power transmission technology

(WPT) is proposed and has been widely studied to charge

UAVs wirelessly [30]–[32]. For example, the Air TurnKey

wireless charging system [30] proposed by GET can charge

multiple UAVs in flight within a range of 10m with an average

charging efficiency of 80%. A big commercial UAV can be

fully charged in 6 minutes efficiently, then it can continue to

fly for 20-40 minutes. GET claims that the wireless charging

range can reach more than 20 meters by 2021.

Based on this, we attempt to deploy the least wireless static

chargers (WSCs) in UAV networks to realize charging UAVs

while flying, so that the taking-off and landing time can be

saved and the deployment cost can be minimized.

Challenges: Under the premise that UAVs can replenish

energy they need, to determine the minimum number of WSCs

as well as the location of each WSC, we propose the problem

of WSC deployment in UAV networks (WDU). Solving WDU

is not trivial, and there are three challenges. Firstly, the number

of locations where we can place WSCs is infinite. Secondly,

unlike other static networks in which the rechargeable devices

are static, the flight paths of UAVs are continuous and the

positions of UAVs change continuously. It’s hard to guarantee

UAVs do not run out of energy in each position.

Contributions: The contributions of this paper are summa-

rized as follows:

1) In order to ensure that UAVs can replenish the energy

they need so that UAV networks can complete the long-time

tasks, we propose the WDU problem and formalize it as an

optimization problem.

2) To solve WDU, we propose the scheme of selecting

WSCs’ locations by transforming WDU into a binary integer

programming (BIP) problem (SLTB). In SLTB, we present a

novel area discretization method to reformulate WDU as a BIP

problem that can be solved by existing methods.

3) Finally, experiments are conducted to evaluate the per-

formance of SLTB in saving the number of deployed WSCs.

Our scheme SLTB solves the challenges by area discretiza-

tion. The area discretization we proposed in this paper not only

makes the locations where WSCs can be placed finite but also

makes the locations where UAVs can be charged finite. In

addition, SLTB determines the minimal number of WSCs and
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the location of each WSC by reformulating WDU as a BIP

problem.

Compared with the charger deployment in static networks

[1]–[6], this paper solves the problem of charger deployment

in dynamic UAV networks in which the rechargeable devices

are mobile. In addition, compared with [12], [13], the WSCs in

our scheme can be placed at any location in the UAV network

by adjusting the discretization granularity. Finally, the charging

power in our scheme is inversely proportional to the square of

the distance, which is more realistic than the charging model

in [13].

Organization: The rest of this paper is organized as fol-

lows: we investigate related work in Section II. Section III

introduces the network model, charging model, and problem

statement. We introduce our scheme SLTB in section IV.

Experimental results and conclusions are provided in Section

V and Section VI.

II. RELATED WORK

According to whether the rechargeable devices can move,

existing researches on static charger deployment can be di-

vided into two types.

A. Charger Deployment in Static Network

In static networks, the location of each rechargeable device

is fixed. [1] introduces the traditional Greedy Cone Covering

(GCC) algorithm, which greedily deploys chargers to charge

the static sensor nodes in the network. To gain positions of

chargers over the local optimal result, the globally optimal

result and make WRSNs sustainable by adjusting the locations

of chargers, [2] proposes the PSCD (Particle Swarm Charger

Deployment) algorithm to optimize WRSN charger deploy-

ment. To guarantee the EMR Safety for every location on the

plane, [3] discretizes the placement area into many grids and

proposes an approximate algorithm to deploy chargers.

Unlike these studies, the deployment of directional chargers

is considered in [4]. [4] studies the problem of placing direc-

tional wireless chargers to determine deployment locations,

orientations, and portions of time for all chargers such that

the overall charging utility of all devices can be maximized.

Considering the limited communication range of multiple

directional chargers, [5] proposes an algorithm with a constant

approximation ratio to determine the placement locations and

directions of wireless chargers under connection constraints.

Unlike previous studies, the deployment of a mixture of

directional and omnidirectional chargers is considered in [6],

which proposes a method to find the minimal number of

chargers to cover all sensor nodes in the WRSNs.

In the above studies, the rechargeable devices are static.

When the locations of the WSCs are determined, the energy

that the static devices can receive is determined. However,

in UAV networks, the location of each UAV is continuously

changing, and the energy that each UAV can receive is differ-

ent at different moments. Therefore, the charger deployment

methods in the static network do not apply to the WSCs

deployment in UAV networks.

B. Charger Deployment in Dynamic Network

In dynamic networks, the rechargeable devices are mobile,

so when the locations of WSCs are determined, the power

received by the rechargeable devices is changeable. Both [8]

and [9] consider the charger deployment problem with mobile

rechargeable devices. Full coverage charger deployment is

discussed in [8] and it is assumed that terminal devices are

evenly distributed in the covered area. Instead, [9] aims to

achieve high network survival through a more realistic partial

coverage approach, taking into account the human mobility of

carrying terminal devices in extremely large sensor networks.

Based on the more complicated mobility pattern of people who

wear wearable devices, [10] formulates the problem which

investigates a specific stay-move behavior pattern to deploy

a charger to minimize the charging service budget. Compared

with [10], the deployment of one charger is further extended to

multiple chargers in [11] to monitor the energy consumption

of wearable devices in real-time.

Although the above researches take into account the mo-

bility of rechargeable devices and the deployment of WSCs

can cover all areas where devices may appear, it ignores the

energy that the rechargeable devices required actually and fails

to charge on demand. Based on the actual energy required

by UAVs, this paper proposes a scheme to deploy WSCs.

On the premise of UAVs can be replenished with required

energy, WSCs are deployed as little as possible to save energy

consumption of the UAV network.

III. PRELIMINARIES

In this section, we introduce the network model, the charg-

ing model, and the problem statement. The related symbols

and definitions are shown in Table I.

TABLE I: Symbols and Definitions

Symbols Definitions
N The number of UAVs
ui The i-th UAV

d(a, b) The distance between locations a and b
α, β The charging parameters
Ti The flight time of ui

reti The remaining energy of ui at time t
Ed The dropping energy threshold of UAVs
Ec The energy capacity of UAVs
E0 The initial energy of UAVs
μ The energy consumption rate of UAVs
v The flight speed of UAVs
Ω The WSCs placement area
|G| The number of all discrete grids in Ω
gj The j-th grid in Ω
oj The center of gi
gki The k-th path grid of ui

Tk
i The flight time period of ui in gkj

gmi,j The m-th rechargeable path grid of ui about gj
inTm

i,j The rechargeable flight time period in gmi,j

A. Network Model

As shown in the Fig. 1, after GS plans the flight paths of

UAVs according to the path planning algorithms [27]–[29],
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Fig. 1: The UAV network

N UAVs {u1, u2, · · · , uN} fly along the pre-planned flight

paths. In this paper, WSCs adopt omnidirectional charging

[1], namely, the charging range of each WSC is a circle

and all UAVs within the charging circle can be charged.

Furthermore, we consider the many-to-many charging model

[23], that is, a UAV can receive energy from multiple WSCs

at one location, and a WSC can charge multiple UAVs within

its range simultaneously.

B. Charging Model

This paper adopts the WISP-reader charging model [25].

The charging power received by the rechargeable devices can

be calculated as:

Pr(c, p) =
GsGrη

Lp

(
λ

4π (d(c, p) + β)

)2

P0 (1)

where d(c, p) is the Euclidean distance between the location

of charger c and location p where the rechargeable device

stays. P0 is the source power of chargers, Gs is the source

antenna gain, Gr is the receive antenna gain, Lp is polarization

loss, λ is the wavelength, η is rectifier efficiency, and β is a

parameter to adjust the Frris’ free space equation for short-

distance transmission.

In one-to-many charging model [23], assuming the maxi-

mum charging radius of chargers is R [26], when there are

multiple UAVs close to a WSC within R, all these UAVs can

be charged simultaneously. In (1), except the parameter d(c, p),
the rest are all constants determined by the environment or

device, so we merge all these constants into α. Assuming oc
is the location of WSC c and oi is the location of UAV ui,

(1) can be simplified as:

Pr (oc, oi) =

⎧⎨
⎩

α

(d(oc, oi) + β)2
, d(oc, oi) ≤ R

0 , d(oc, oi) > R
(2)

As shown in Fig. 2, UAV ui flies along its flight path

and passes through positions p1i , p
2
i , p

3
i , p

4
i . Assuming that the

charging radius of WSC cj is R, when ui reaches at position

p1i , the distance between ui and cj is d(cj , p
1
i ) ≤ R, so ui can

receive energy from cj and the charging power Pr(cj , p
1
i ) > 0.

However, when ui arrives at position p4i , the distance between

ui and cj is d(cj , p
4
i ) > R, then ui cannot receive energy

from cj , that is, Pr(cj , p
4
i ) = 0. In addition, if ui is within

the charging circles of multiple WSCs {c1, c2, · · · , cM} at

location oi, the total charging power Pr(oi) of ui received

Fig. 2: Charging model

at location oi is the sum of the charging power received from

each WSC, that is:

Pr(oi) =

M∑
m=1

Pr(cm, oi) (3)

C. Problem Formulation

The goal of this paper is to determine the minimum number

of WSCs as well as the location of each WSC, so that UAVs

do not run out of energy during the flight. Assuming the

number of WSCs that are placed in the UAV network is Ψ,

the problem of WSC deployment in the UAV network (WDU)

can be formalized as follows:

(P1)

minΨ (4)

subject to:

∀i ≤ N, t ≤ Ti, Ed ≤ reti ≤ Ec (5)

The condition in (5) ensures that the remaining energy reti
of any UAV ui(1 ≤ i ≤ N) at any time t(t ≤ Ti) is greater

than the dropping energy threshold Ed and less than the energy

capacity Ec. Ti is time when ui finishes flight.

IV. SOLUTION

As proved in [9], the charger deployment problem with

mobile devices is NP-hard. In this section, we introduce the

scheme SLTB (selecting locations by transforming WDU into

BIP).

A. Discretizaion

(a) The flight path in 3D (b) The flight path in 2D

Fig. 3: Mapping flight paths from 3D to 2D plane

In a UAV network, there are infinite locations where WSCs

can be placed. Supposing the flight paths of UAVs are pre-

planned by path planning algorithms [27]–[29], to get the
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Fig. 4: Discretizaion

Fig. 5: Discretizaion in detail

candidate placement locations of WSCs, we discretize the

placement area of WSCs and the flight paths of UAVs. Without

loss of generality, we first map the flight path of ui from 3D

to 2D to determine whether the flight path of ui is within the

charging circle of WSC cj . As shown in Fig. 3a, the positions

p1, p2 where ui arrives at and leaves the charging circle of cj
are mapped as p

′
1 and p

′
2. Fig. 3b shows the flight path of ui

in 2D plane.

Placement area: The area that covers all flight paths of

all UAVs is defined as the flight area. Then, we uniformly

expanding the flight area by the charging range of WSCs R
along horizontal and vertical directions to get the placement
area Ω of WSCs (the blue and yellow areas in Fig. 4). This

is because the WSCs that are placed outside the placement

area cannot replenish energy to any UAV within the flight

area. Finally, to determine the candidate locations of WSCs,

we discretize the placement area into many grids with the side

length e. The grid set G = {g1, g2, · · · , g|G|} corresponds to

each discrete grid in Ω. The WSCs can be placed in the center

of each grid gj(1 ≤ j ≤ |G|), and the center of each grid is

denoted as oj .

Path grids gki : Supposing the number of grids that the flight

path of UAV ui passes through is Ki (as the green grids shown

in Fig. 4). We call the Ki grids that UAV ui passed as path
girds, which are denoted as Gi = {g1i , g2i , · · · , gKi

i }. The

flight time period of ui in each path grid gki (1 ≤ k ≤ Ki) is

T k
i = [stki , et

k
i ], where stki is the time when ui enters gki and

etki is the time when ui leaves gki .

As shown in Fig. 4, there are 121 grids in Ω. Assuming the

UAV ux(1 ≤ x ≤ N) starts at position p0. Then ux arrives

at position p1 at time t1, and ux reaches at locations p2, p3
at time t2 and t3. The grid g54 that the flight path from p0 to

p1 locates at is the first path grid g1x of ux. The grid g53 that

the flight path from p1 to p2 locates at is the 2-nd path grid

g2x of ux, that is g2x = g53. The flight time from t1 to t2 is

denoted as the flight time period T 2
x = [t1, t2]. Similarly, the

flight path from p2 to p3 locates at grid g52, which is the 3-rd

path grid of ux, that is g3x = g52 and T 3
x = [t2, t3].

Rechargeable path grids gmi,j: When a WSC cj is placed

in the j-th grid gj , the sub-path of ui that is within the

charging range of cj covers Mi,j grids. In these Mi,j grids,

ui can receive energy from the WSC in gj . These path grids

are called as the rechargeable path grids of ui about gj
and are denoted as Gi,j = {g1i,j , · · · , gMi,j

i,j }. Corresponding

to each rechargeable path grid gmi,j(1 ≤ m ≤ Mi,j), the

rechargeable flight time period of ui about gj is denoted as

reTm
i,j = [sreTm

i,j , ereT
m
i,j ]. sreT

m
i,j and ereTm

i,j are the time

for ui to enter and leave the charging range of cj when ui

flies in gmi,j .
It should be pointed out that, each rechargeable path grid

gmi,j(1 ≤ m ≤Mi,j) of ui about gj corresponds to a path grid

in path grid set Gi. That is there is a grid gki ∈ Ki, g
k
i = gmi,j .

In addition, the rechargeable flight time period reTm
i,j corre-

sponding to gmi,j , and the flight time period T k
i corresponding

gki meet the following inequality: |T k
i | ≥ |reTm

i,j |.
Taking Fig. 4 as an example, the path grid set Gx of ux

contains 19 path grids (pink and green grids). Assuming that

a WSC is placed in the 52-th grid g52 and R = e. As shown

in Fig. 5, there are 3 rechargeable path grids of ux about g52
(pink grids in Fig. 5). The first path grid g1x = g54 is outside

the charging circle of the WSC in g52, and the 2-nd, 3-rd,

4-th path grids g2x, g
3
x, g

4
x of ux are within the charging circle,

which correspond to the grids g53, g52, g63 in Ω.
As shown in Fig. 5, when ux arrives at p1 at time t1,

ux enters the first rechargeable path grid g1x,52 about g52.

However, until at the time t12 when ux arrives at p12, ux

enters the charging circle and it can receive energy from the

WSC in g52. When ux arrives at p2 at time t2, u1 leaves

g1x,52. Therefore, although the flight time period of ux within

the path grid g2x is T 2
x = [t1, t2], the rechargeable time period

when ux can receive energy is reT 1
x,52 = [t12, t2]. Apparently

|reT 1
x,52| ≤ |T 2

x |.
Similarly, we can obtain the rechargeable flight path grid

set Gx,52 of UAV ux about grid g52 and the corresponding

rechargeable flight time period set reTx,52 are:

Gx,52 = {g1x,52, g2x,52, g3x,52}
= {g2x, g3x, g4x}
= {g53, g52, g63}

reTx,52 = {reT 1
x,52, reT

2
x,52, reT

3
x,52}

= {[t12, t2], [t2, t3], [t3, t4]}
When a WSC is placed in gj , in order to calculate the energy

that UAV ui(1 ≤ i ≤ N) received from the WSC in gj , we
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approximate the charging power of ui in each path grid gmi,j
as:

Pr
(
oj , o

m
i,j

)
=

⎧⎨
⎩

α

(d(oj , omi,j) + β)2
, d(oj , o

m
i,j) ≤ R

0 , d(oj , o
m
i,j) > R

(6)

where oj is the center of grid gj , omi,j is the center of the m-th

rechargeable path grid gmi,j of ui about gj .

Thus, the energy ΔEm
i,j received by UAV ui in gmi,j from

the WSC in grid gj is equal to the charging power Pr(oj , o
m
i,j)

times the length of the rechargeable flight time period |inTm
i,j |,

that is:

ΔEm
i,j = Pr(oj , o

m
i,j) · |inTm

i,j | (7)

B. Problem Reformulation

Firstly, we define xj to denote whether a WSC is placed in

grid gj . If xj = 1, it means there is a WSC in gj . Otherwise,

no WSC is placed in gj . Secondly, we think that a UAV can

receive energy from multiple WSCs from different grids at

the same time. Therefore, the energy received by ui within

the k-th path grid gki can be calculated as:

ΔEk
i =

|G|∑
j=1

(
xj ·ΔEk

i,j

)
(8)

where ΔEk
i,j is energy that ui received in the k-th rechargeable

path grid gki,j from the WSC in gj . Then WDU can be

reformulated as:

(P2)

min f(X) =

|G|∑
j=1

xj (9)

subject to: {
ereki ≥ Ed

ereki ≤ Ec
(10)

where

xj ∈ {0, 1} (11)

ereki = sreki +ΔEk
i − μ · ∣∣T k

i

∣∣ (12)

sreki =

{
erek−1

i ,k > 1

E0,k = 1
(13)

The flight time period that ui stays in the k-th path grid

gki is T k
i = [stki , et

k
i ]. sreki denotes the remaining energy

of ui at time stki when ui enters gki and ereki denotes the

remaining energy of ui at time etki when ui leaves gki . Then

the constraints in (5) is denoted as (10), which ensures that

the remaining energy of ui in each grid is greater than the

dropping energy threshold Ed and less than the maximum

energy capacity Ec.

In (13), when k = 1, gki is the first path grid of ui and the

remaining energy sreki of ui is equal to the initial energy E0.

Otherwise, sreki equals the remaining energy erek−1
i when ui

leaves the (k − 1)-th path grid gk−1
i .

As shown in (12), the remaining energy ereki when ui leaves

the k-th path grid gki equals the remaining energy sreki when

ui enters gki plus the energy ΔEk
i that ui received in gki , and

minus the energy μ · |T k
i | that ui consumed in gki , where μ is

the energy consumption rate of UAVs.

C. Problem Transformation

After problem reformulation, determining the minimal num-

ber of WSCs and the location of each WSC is transformed into

determining xj = 0 or xj = 1 in each grid gj(1 ≤ j ≤ |G|).
Now, we transform WDU (P2) into a BIP problem.

First of all, we define the independent variable matrix X
as:

X =
[
x1 x2 · · · x|G|

]T
(14)

The coefficient matrix O of the objective function is set as:

O =
[
1 1 · · · 1

]
1×|G| (15)

So, the objective function (9) can be expressed as:

min f(X) = O ×X (16)

Next, about the constraint (5), we derive as follows. For the

remaining energy ereki of UAV ui(1 ≤ i ≤ N) in the k-th

path grid gki , we have:

ereki = sreki +ΔEk
i − μ · ∣∣T k

i

∣∣
= erek−1

i +ΔEk
i − μ · ∣∣T k

i

∣∣
= · · ·

= E0 +
k∑

k′=1

(ΔEk′
i − μ · ∣∣T k′

i

∣∣)
(17)

So, we have:

Ed ≤ E0 +
k∑

k′=1

(ΔEk′
i − μ · |T k′

i |) ≤ Ec (18)

That is:{ ∑k
k′=1 ΔEk′

i ≤ Ec − E0 +
∑k

k′=1 μ · |T k′
i |∑k

k′=1 ΔEk′
i ≥ Ed − E0 +

∑k
k′=1 μ · |T k′

i |
(19)

The energy that ui received in all path grids gki (1 ≤ k ≤
Ki) is denoted as Ei, then we have:

Ei =

⎡
⎢⎢⎢⎢⎣

ΔE1
i,1 ΔE1

i,2 · · · ΔE1
i,|G|

ΔE2
i,1 ΔE2

i,2 · · · ΔE2
i,|G|

...
...

. . .
...

ΔEKi
i,1 ΔEKi

i,2 · · · ΔEKi

i,|G|

⎤
⎥⎥⎥⎥⎦ (20)

where ΔEk
i,j is the energy that ui received in the k-th grid

gki (1 ≤ k ≤ Ki) from the WSC placed in gj(1 ≤ j ≤ |G|).
In addition, in order to ensure that the remaining energy

of each UAV ui(1 ≤ i ≤ N) in each path grid meets the

constraint (10), we define the upper bound matrix Ui and lower

bound matrix Li as follows:

Li = μ · (Ai × Ti) + (Ed − E0)× Ii (21)

Ui = μ · (Ai × Ti) + (Ec − E0)× Ii (22)
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where

Ai =

⎡
⎢⎢⎢⎣

1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

⎤
⎥⎥⎥⎦
Ki×Ki

(23)

Ti = [|T 1
i | |T 2

i | · · · |TKi
i |]T (24)

Ii = [ 1 1 · · · 1 ]TKi×1 (25)

Next, we define the weight coefficient matrix Wi as:

Wi = Ai × Ei (26)

Considering N UAVs in the UAV network, the weight

matrix W of the UAV network is defined as:

W =
[
W1 W2 . . . WN

]T
(27)

The upper bound and lower bound constraint matrix of the

UAV network U,L are denoted as:

U =
[
U1 U2 . . . UN

]T
(28)

L =
[
L1 L2 . . . LN

]T
(29)

Then, WDU can be transformed into a BIP problem:

(P3)

min f(X) = O ×X (30)

subject to: {
W ×X ≥ L
W ×X ≤ U

(31)

So far, WDU is transformed into a BIP problem. By solving

P3 to calculate xj =0 or xj = 1, we can determine whether

placing a WSC in each grid gj(1 ≤ j ≤ |G|) of Ω and obtain

the optimal WSC deployment scheme.

V. SIMULATION EXPERIMENTS

Based on the actual hardware prototype proposed by GET

[30], we proposed our scheme SLTB. However, the wireless

UAV charging system of GET has not yet been mass-produced,

so we will purchase relevant equipment in the near future

and conduct field experiments to verify our model. In this

section, we conduct simulation experiments to evaluate SLTB.

We compare SLTB with different WSC deployment schemes

by analyzing the impact of different parameters on different

metrics.

A. Experimental Setup

The experiments are conducted on the extended ONE simu-

lator, in which we added the charging model [25] to model the

charging and flight of UAVs. Considering the computational

complexity, the BIP problem is solved with the Lagrangean

relaxation in [14].

For we are the first to study the WSC deployment problem

in the UAV network, to evaluate the performance of SLTB,

we first propose a baseline algorithm to select the locations of

WSCs randomly (SLR). In SLR, WSCs’ are selected randomly

to replenish energy for UAVs while the number of WSCs is

minimized. Besides, the mobility-aware charger deployment

(MACD) in [9] is also used for comparison. Based on the

known movement model of end-devices, MACD predicts the

candidate locations where the energy of end-devices draining-

out may happen, and the grids where those candidate locations

locate should be deployed with chargers to prevent the energy

draining out. In this paper, the movement model in MACD

is replaced by the flight paths of UAVs. The experimental

parameters and default values are set based on [9].

TABLE II: Parameters and Default Values

Parameters Default Values
N 5
v 1m/s
μ 500KJ/ms

Ec 500×103KJ

E0 500×102KJ

Ed 10×102KJ
e 20m
R 20m

B. Experimental results

In this subsection, we study the impact of 10 parameters

on the number of placed WSCs (NoW) in SLTB, SLR, and

MACD, namely: the number of UAVs (N ), the charging radius

of WSCs (R), the charging parameters (α and β), the flight

speed of UAVs (v), the energy consumption rate of UAVs (μ),

the initial energy of UAVs (E0), the maximal energy capacity

of UAVs (Ec), the dropping energy threshold (Ed) and the

edge of grids (discrete granularity e). Multiple experiments

are conducted and the average results are discussed below.

1) The impact of N : To evaluate the impact of the number

of UAVs N on NoW, we set N from 1 to 6. As shown

in Fig. 6a, SLTB outperforms MACD and SLR by 75%,

47.5% respectively. With the increase of N , the placement

area becomes larger and more WSCs are needed to replenish

energy for more UAVs. From the results in Fig. 6a, we can find

that when there are more UAVs in the UAV network, SLTB

performs much better than SLR and MACD.

2) The impact of R: To evaluate the impact of the charging

radius R of WSCs in the UAV network, when the edge length

of grids e = 25, we set R as 5m, 12.5m, 20m, 25m, 30m,

which discusses 5 different cases between the length of e and

R: 2R >
√
2e, 2R =

√
2e,
√
2e > 2R > e, 2R = e, 2R < e.

As shown in Fig. 6b, our scheme SLTB outperforms MACD

and SLR by 78.24%, 44.07% respectively. With the increase of

R, the time duration when UAVs can receive energy becomes

longer and UAVs can replenish more energy during the flight,

so the number of WSCs that the UAV network needs decreases.

3) The impact of α: To evaluate the impact of the charging

parameter α in the UAV network, we set α from 150 to 250.

As shown in Fig. 6c, SLTB outperforms MACD and SLR

by 37.87%, 20.01% respectively. With the increase of α, the

received power of each UAV from the WSC increases, so the

number of WSCs decreases.
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Fig. 6: Experimental results

4) The impact of β: To evaluate the impact of the charging

parameter β in the UAV network, we set β from 0.1 to 1. As

shown in Fig. 6d, our scheme SLTB outperforms MACD and

SLR by 37.36%, 20.33% respectively. With the increase of β,

the received power of each UAV from a WSC decreases, so

the NoW increases. Besides, as the charging power is nearly

proportional to the inverse square of β, the NoW first increases

at a fast speed with β, and then increases smoothly.

5) The impact of v: To evaluate the impact of the flight

speed v of UAVs, we set v from 0.8m/s to 2m/s. As shown

in Fig. 6e, SLTB outperforms MACD and SLR by 78.74%,

66.01%. With the increase of v, the length of flight time

decreases, so the energy that UAVs consumed decreases. The

faster UAVs fly, the less energy is needed to replenish, so fewer

WSCs are needed. Besides, compared with SLR and MACD,

SLTB optimizes both the number of WSCs and the location

of each WSC, so the WSCs deployed in SLTB are fewer.

6) The impact of μ: To evaluate the impact of the energy

consumption rate μ of UAVs, we set μ from 500KJ/s to

1500KJ/s. As shown in Fig. 6f, SLTB outperforms MACD and

SLR by 61.63%, 45.61% respectively. With the increase of μ,

the energy that UAVs consumed increases and more energy

needs to replenish, so the NoW increases.

7) The impact of E0: To evaluate the impact of the initial

energy of UAVs E0, we set E0 from 400 × 102KJ to 700 ×
102KJ. As shown in Fig. 6h, SLTB outperforms MACD and

SLR by 70.63%, 50.61% respectively. With the increase of

E0, less energy needs to be replenished for UAVs, so the NoW

decreases. Compared with MACD and SLR, when E0 keeps

increasing, the NoW in SLTB drops to 0 faster.

8) The impact of Ec: To evaluate the impact of the energy

maximum capacity of UAVs Ec, we set Ec from 51×104KJ to

53× 104KJ. As shown in Fig. 6g, SLTB outperforms MACD

and SLR by 61.63%, 46.61% respectively. With the increase

of Ec, UAVs can hold more energy when they are flying and

the energy they need to replenish during the flight decreases,

so the NoW decreases.

Fig. 7: The impact of e on NoW and RO

9) The impact of Ed: To evaluate the impact of the

dropping energy threshold Ed, we set Ed from 0 to 11×103KJ.

As shown in Fig. 6i, our scheme SLTB outperforms MACD

and SLR by 59.56%, 42.28% respectively. With the increase

of Ed, the charging request of UAVs becomes more frequent,

so, more WSCs are needed to replenish energy.

10) The impact of e: To study the influence of the discrete

granularity, we set the edge length of grids e from 1m to 50m.

The results are shown in Fig. 6j - Fig. 6l and Fig. 7.

As Fig. 6j shown, with the increase of e, the number of

discrete grids |G| decreases gradually. The smaller e is, the

more candidate locations of WSCs there will be and the results

will be more realistic. However, as shown in Fig. 6l, the longer

the SLTB runs as e decreases and the overhead of running

(RO) is higher. Fortunately, as shown in Fig. 7, our scheme

SLTB can get a good result at a relatively smaller RO, and

the number of WSCs in SLTB is reduced by 27% and 48.27%

respectively compared to SLR and MACD.

VI. CONCLUSION

In order to prolong the lifetime of UAVs, this paper studies

the problem of WSC deployment in UAV networks (WPU).

By determining the minimal number of WSCs as well as the

location of each WSC, UAVs can be replenished with the

energy they need and do not run out of energy during flight.

We first formalize WPU as an optimization problem, which
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is proved to be NP-hard. Then we propose the scheme of

selecting the location of WSCs by transforming WPU into

BIP (SLTB). In SLTB, the placement area and flight paths of

UAVs are discretized first, and then we present a novel method

to reformulate WDU as a BIP problem, which can be solved

by existing methods. Finally, experiments are conducted to

evaluate that the performance of the SLTB in reducing the

number of WSCs.
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