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Abstract—Traditional studies on jamming effectiveness and
propagation over the wireless channel assume ideal theoretical
models, such as Friis and Rician. However, the cited models have
been hardly validated by on-field assessments in real jamming
scenarios. To the best of our knowledge, we are the first ones
to fill the highlighted gap. In particular, our objective is to
provide a realistic jamming propagation model, taking into
account heterogeneous operating frequencies and technologies.
Our findings, supported by an extensive experimental campaign
on outdoor jamming propagation, show that independently from
the communication frequency the jamming power received at a
given distance from the jamming source (fast fading) can be best
modelled through a t-locationScale distribution, while the power
of the received jamming decades with the increase of the distance
from the jamming source (slow fading) following a power law.
As reference applications of the derived experimental model, we
describe and demonstrate its usage in two different use-cases,
i.e., jamming source localization and dead-reckoning navigation,
showing that our model outperforms traditional and state-of-
the-art propagation models when dealing with real jamming
scenarios. All the acquired data have been released as open-
source, to foster experimental research activities on jamming
propagation models and their applications.

Index Terms—Jamming, Channel Propagation Model, Jam-
ming Localization, Dead Reckoning Navigation.

I. INTRODUCTION

Jamming is currently one of the most popular and effective

techniques adopted to prevent communications in a given

area of interest [1], [2]. By injecting noise at high power

on one or more wireless channels, it is possible to disrupt

regular wireless communications on the target frequencies to

disable the communication infrastructure of the competing

entities in the area [3]. With the technological progress in

manufacturing and embedding technologies characterizing the

last decade, jamming devices have gained in disruption range

and effectiveness [4]. Jamming techniques are used both in

offensive and defensive applications. For instance, the army

increasingly uses jamming when conducting operations on

lands and sea, to disable key communication technologies

on the target, such as the Global Positioning System (GPS)

and the regular wireless communications capabilities [5]. At

the same time, jamming represents one of the key strategies

to protect against privacy invasion attacks carried out by

remotely-piloted drones or to allow communications only via

pre-defined escape mechanisms (e.g., friendly jamming) [6].

Although jamming being a popular technology, the fine-

grained effects of the injection of jamming signals on the

behaviour of a generic wireless communication channel are

still mostly unclear. Despite the existence of related studies

concerning traditional wireless communication channels (e.g.,

[7], [8], [9], [10]), the validity and general applicability of

such studies to jammed channels are mostly unexplored.

Specifically, as emerged from the literature study summa-

rized in Section II, the recent literature misses an accurate

description of the propagation model of a jamming signal

at different frequencies, its behaviour and effectiveness at

increasing distance from the emission point, as well as its

capability to resist against side-channels attacks, e.g., aimed

at identifying its location and using it against the deploying

entity. In addition, none of the studies available in the literature

provided real, shared data allowing to model outdoor jamming

propagation.

The knowledge and modelling of the above-described phe-

nomena could have several applications. For instance, by

analyzing the received power at different locations, a mobile

entity could gain information on the jammer’s deployment

site (i.e., jammer localization). The receiving device could

also correlate such measurements with the last known self-

location, to implement secondary self-localization approaches.

Moreover, in areas where the GPS is denied, similar techniques

could be used to navigate in a jammed area (i.e., dead

reckoning navigation) or unveil sensitive information about

the location of a protected target. Furthermore, the entity

deploying the jammer can use such models to plan in advance

the area to be disrupted by the intentional interference and to

identify weak spots beforehand.

Contributions. We aim to fill the above-highlighted knowl-

edge gap by providing methods and techniques to model a

communication channel subject to jamming attacks. In partic-

ular, our methodology is rooted on an extensive experimental

campaign, carried out by acquiring real outdoor jamming

signals on three different reference channels (500.00 MHz,

1, 575.42 MHz, and 2, 437.00 MHz). Based on such data,

we analyzed the resulting status of the channel at increasing

distance from the jamming source. Our results show that, inde-

pendently from the channel frequency, the received jamming

power at a given distance from the emitting source consistently
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exhibits the same statistical behaviour, that can be best mod-

elled through a t-locationScale distribution. At the same time,

independently from the frequency, the emitted jamming power

decades at increasing distance from the source, following a

power-law distribution (i.e., quicker than commonly-assumed

experimental models, based on the square law). To show

the effectiveness and applicability of our results, we applied

our findings to two reference use-cases, i.e., jamming source

localization and jammer-aided navigation. We demonstrate that

a mobile entity (e.g., an Unmanned Aerial Vehicle (UAV)),

able to identify ongoing jamming, can use our model to

determine the deployment location of the jamming with errors

as small as ≈ 27 cm. Moreover, using our model, the mobile

entity can stealthily navigate the jammed area to reach the

jammer or any target deployed in the area, with accuracy and

performance depending on the match of our model with real

operating conditions, the time spent in channel acquisition,

and real-time constraints.

We released the data acquired from the wireless com-

munication channel during our experimental campaign as

open-source, allowing researchers and practitioners from both

Academia and Industry to verify our findings and to leverage

them to further validate their proposed models—for instance,

the effectiveness of their anti-jamming methods on real out-

door jammed channel conditions [11].

Roadmap. The rest of this manuscript is organized as

follows. Section II summarizes the related work, Section III

illustrates the assumed scenario, Section IV describes the

methodology we used to model the jammed channel, Section V

depicts our findings from three reference case studies, Sec-

tion VI presents two reference applications of our model, i.e.,

for jammer localization and dead reckoning navigation in a

jammed area, respectively, Section VII compares our findings

with the current literature, and finally, Section VIII tightens

conclusions and draws future research directions.

II. RELATED WORK

This section analyses the scientific contributions closest to

our work, explaining similarities and differences with our

approach. Overall, we divide the discussion based on the

subject topic, i.e., channel modelling, jammer localization, and

dead-reckoning navigation.

Channel Modelling. The authors in [7] provided a detailed

tutorial on the modelling of a generic wireless communication

channel. The authors focused on the most common radio

propagation models available in the literature, by providing

empirical results in different scenarios and a set of recom-

mendations to model an RF communication channel properly.

Despite being inspiring for this work, the cited contribution

did not provide any reference to the modelling of a jammed

communication channel (see Section VII for more details). A

few other works specifically tackled communication channels

experienced by drones. For instance, the authors in [12]

provided a tutorial on UAV-aided wireless communications,

describing the existing radio propagation models most suitable

for UAV applications. Although the t-locationScale distribu-

tion is mentioned, there are no further details, and not even

findings based on real data in jamming scenarios. Other studies

on UAV-aided communication channels focused on suburban

scenarios ([13]) and UWB communications ([14]), but they do

not take jamming into account. Note that some contributions,

such as [15], studied the effectiveness of radio jamming attacks

based on packet reception profiles, and also released data.

However, such data do not allow to model the behavior of

the radio propagation channel during a jamming attack, and

neither to characterize its variations on different frequencies.

Jammer Localization. A few studies have tackled jammer

localization. The authors in [16] proposed a lightweight and

distributed algorithm leveraging the gradient descent technique

on the Packet Delivery Ratio (PDR) for jammer localization.

The authors in [17] exploited the Received Signal Strength

(RSS) to localize a jammer, by increasing the transmission

power gradually up to the jamming power, so to estimate the

jammer position. Other contributions, such as [18], proposed

collaborative solutions based on the Time-of-Arrival (ToA) and

Angle-of-Arrival (AoA), combined with the RSS. By estimat-

ing the distance between the receiving nodes and the jammer,

they localize the jamming source. Other solutions such as [19]

use various techniques such as Centroid Localisation (CL),

Virtual Force Iteration Localization (VFIL), and Adaptive

Jammer Localisation Algorithm (AJLA). However, neither the

cited contributions use real data, nor test the effectiveness of

their solutions based on real data.

Dead Reckoning Navigation. Dead-Reckoning navigation

systems estimate the current position of a mobile device by

using previously-determined locations and additional cyber-

physical information, such as speed, wind, and other reference

sources, not meant explicitly for navigation purposes. In this

context, the authors in [20] introduced a dead reckoning

system for outdoor localization using crowd-sourcing (e.g.

via road landmarks, sensors, radio anchors) to reset location

inaccuracies in GPS-denied environments. In [21], the authors

proposed a system exploiting jamming signals to support

the navigation of an autonomous vehicle. Their scheme first

localizes the jamming source and then uses the jammer as

a radio-beacon to reach the destination. Another example is

the proposal by the authors in [22], introducing a data-based

dead reckoning navigation system for ships allowing position

estimates during a Global Navigation Satellite System (GNSS)

outage. Note that none of these proposals used real data, but

only simulated data based on idealized propagation models or

assumptions. Finally, note that some previous “closed-source”

military products, such as the AGM-88 HARM [23] used dur-

ing the cold war, already included strategies to autonomously

detect/localize enemy radars, e.g., to destroy them. However,

being the cited products and their further releases protected by

intellectual property rights, we cannot know the details about

the underlying technology.

III. SCENARIO AND ASSUMPTIONS

The scenario of this manuscript is depicted in Figure 1.
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Jammed Area
Jammer

Figure 1: Scenario assumed in this work. A jammer emits

noise on a bandwidth
[
f0 − B

2 , f0 +
B
2

]
. A mobile entity (e.g.,

an UAV) detects the jamming and performs several channel

acquisitions rounds in different locations, so to model the

channel and infer information about the jammer.

We assume that a jammer device (referred to simply

as a jammer) is placed statically in a specific location.

It emits a high-power signal on a particular bandwidth[
f0 − B

2 , f0 +
B
2

]
, with f0 central jamming frequency, to

block all contemporary wireless communications on this fre-

quency/channel. Without loss of generality, we assume that

the signal emitted by the jammer is Additive White Gaussian

Noise (AWGN), constantly injected on the communication

channel—we refer to the jammer operating under this con-

dition as a constant jammer. Note that this is not a limitation

of our approach, and it does not compromise the general

applicability of our results to scenarios where the jamming

is intermittent. Indeed, provided that the jamming is detected,

it is enough to restrict the analysis to the RSS values above a

given threshold to apply our method also when the jamming

is intermittent. Moreover, we assume that the jammer features

an omnidirectional antenna, so that the emitted interference

can propagate wirelessly with an angle of 360 degrees around

its deployment location. This assumption is also realistic, as

the jammer is usually interested in blocking communications

across all directions. The jammer is also placed at the highest

location, to spread its effect to the maximum distance.

At the same time, we assume that the receiving device is

equipped with a general-purpose RF receiver, able to extract

from the channel the RSS samples over a specific bandwidth B
around the main communication channel f0 (i.e., the frequency

range is
[
f0 − B

2 , f0 +
B
2

]
). We also assume that the receiving

device is mobile, being able to acquire the status of the

selected communication channel at different locations and to

correlate such measurements. For instance, the receiving de-

vice can be an UAV or a drone, equipped with a tiny Software

Defined Radio (SDR) such as a MyriadRF LimeSDR [24]. We

also assume a Line of Sight (LoS) link between the jammer

and the receiver. This assumption is also reasonable, as a

jammer is usually placed at the highest possible location, to

maximize its disruptive effect on the surrounding environment.

Conversely, Non-Line of Sight (NLOS) propagation conditions

limit the range and effectiveness of a jammer, being a sub-

optimal deployment.

Finally, we summarize the notation used in this paper in

Table I.

Table I: Notation used throughout the paper.

Notation Description
f0 Channel central frequency.
B Acquired bandwidth around f0.
PJ Jamming power.

Pr(d, t) RSS at time t and distance d from the jammer.
d Distance from the transmitter.

Θ(d) Deterministic component of RSS at distance d.
Ψ(p) Long-term/slow fading at position p.
ϕ(t) Short-term/fast fading at the time t.
sr Sample rate of the receiving device.
st Sample rate of the transmitter device.
D Vector of the distances used for channel modeling.
dn Generic n-th element of the distance vector D.
K FFT input and output window size.
τ Acquisition time of the RSS samples.
M Number of observed FFT windows per acquisition.
λ RSS Threshold for jamming detection.

rssn Generic n-th element of real experimental data.
ˆrssn Generic n-th element of the reconstructed data.
en Residuals (estimates of the errors).

L̂ Maximum value of the likelihood function.
δ Number of parameters for the AIC tool.
μ Mean Value of the acquired samples.
σ Variance of the acquired samples.
Λf Set of distributions used for channel modeling.

a, b, c Coefficients of the power-relationship model.

β
(
Λf

)
Resulting channel model.

Pω RSS expected at the boundary of the jammed area.
PE RSS expected on the jammer location.

IV. MODELLING COMMUNICATION CHANNELS UNDER

JAMMING

This section describes the method we used to model a

generic communication channel under jamming attacks. With-

out loss of generality, let us assume that a jammer is placed

in a given area of interest. It emits noise uniformly-at-random

on the frequency f0, with the maximum available power PJ .

In line with the analysis reported by the authors in [7] for

a generic communication channel, we can express the RSS

Pr(d, t) at distance d from the jamming location, at the time

t, as shown in Eq. 1.

Pr(d, t) = Θ(d) + Ψ(d) + ϕ(t)[dBm], (1)

where Θ(d) is the deterministic component of the received

power at distance d, usually modeled through a path-loss radio

propagation model, Ψ(d) denotes the space-dependent compo-

nent, namely long-term/slow fading or shadowing, generated

by the scattering and reflections of the radio signal due to

obstacles, and ϕ(t) describes the time-dependent component

of the received signal at the time t, namely short-term/fast
fading.

The jammed channel characterization aims to set up a

general model that can be used to characterize the behaviour

1564



of the RSS of the jamming across both time and space. Our

technique consists of the following phases.

• Data Acquisition. In this phase, the receiver acquires RSS

samples at several locations at a distance dn from the

jammer, for a time τ .

• Fast Fading Model Generation. The receiver analyzes all

the samples received at a given location (distance dn from

the jammer), to obtain information about the time-related

evolution of the distribution of the RSS samples, i.e.,

ϕ(t).
• Slow Fading Model Generation. The receiver analyzes

the change in the distribution of the RSS at different

distances, to obtain information on the space-related

evolution of the distribution of the RSS samples, i.e.,

Ψ(d).

Note that our model does not explicitly derive the determin-

istic component Θ(d). However, its modelling is implicit in

the definition of the components ϕ(t) and Ψ(d).

Data Acquisition. This phase consists of the acquisition

of a set of RSS samples, in the bandwidth
[
f0 − B

2 , f0 +
B
2

]
around the reference channel frequency f0, for a time τ , and

for a set of distances D = {d1, d2, . . . , dn} from the jamming

source. Note that, starting from the raw I/Q samples acquired

with a sample rate sr, the receiving device performs a Fast

Fourier Transform (FFT) operation with a window size K, to

obtain estimates of the RSS on the reference bandwidth. As a

result, for each channel with central frequency f0 and distance

dn from the jamming source, this phase outputs an M × K
matrix, where M are the total number of observed windows

and K is the FFT size. Such samples are then processed

to obtain information about the fast fading and slow fading

components, as described below.

Fast Fading Model Generation. In this phase, for a given

channel with central frequency f0, we consider only the RSS

samples acquired at a given distance dn from the jamming

source. From the previous phase, we recall that we have in

input a matrix with size M × K, where M are the total

number of observed windows, and K is the FFT size. To

focus the analysis on the signal of interest only, we set up

a threshold λ and, for each row of the matrix, we selected

only the RSS samples exceeding such a threshold. Then, we

computed the mean of the remaining RSS values, obtaining

a single RSS value summarizing all the measurements of the

signal of interest around f0.

Overall, the output of the previous operation is a set of

M RSS values, summarizing the time-domain evolution of

the RSS on the frequency f0 at a distance dn from the

emitting source. Due to the fast fading effects, these values

are statistically distributed and not static. Therefore, we obtain

the empirical statistical distribution of these values through a

histogram modelling each value’s appearance ratio in the set of

M RSS values. The statistical distribution of these weights is

then compared to a set of well-known distributions, to find the

statistical distribution (and related parameters) that best fits the

experimental data. To find the parameters of each distribution

that are closer to our data, we used the Maximum Likelihood

(ML) method [25]. In particular, we find the parameters of the

statistical model that minimize the residuals en, as in Eq. 2.

en = (rssn − ˆrssn) , (2)

where rssn denotes the real (discrete) experimental data,

ˆrssn refers to the reconstructed values using the specific

statistical distribution, and en identifies the residuals. Note that

the tools available to fit statistical distributions to experimental

data require strictly positive values. Therefore, it might be

necessary to convert the RSS into strictly-positive values, i.e.,

to switch RSS from [dBm] to [mW ].
Finally, to cross-compare the best-fit statistical distributions,

we used the Akaike Information Criterion (AIC) tool, as in

Eq. 3.

AIC = 2 · δ − 2 ln (L̂), (3)

where L̂ is the maximum value of the likelihood function for

the model, and δ represents the number of parameters for the

corresponding distributions. The lower the AIC, the better the

specific distribution fits the experimental data. Therefore, the

statistical distribution (and related parameters) that exhibits the

lower AIC is selected as the reference statistical distribution

of the fast fading component of the jamming signal.

The final output of this phase is a set of statistical distri-

butions, valid for each frequency f0 and distance dn from the

jamming source, together with the related parameters (e.g., the

mean value μf,n and the variance σf,n).

Slow Fading Model Generation. In this phase, we cross-

correlate the statistical distributions (and related parameters)

for different locations at a distance dn from the emitting

source, for the same reference channel frequency f0. Recall

that the output of the previous phase is a set of statistical

distributions, characterized by parameters such as the mean

μf,n of the samples acquired on the channel with frequency

f , at a distance dn from the jamming source. We consider

all the mean values of such distributions, stacked in a vec-

tor Λf =
[
μf,1, μf,2, . . . , μf,n, . . . , μf,N

]
, and we apply a

regression technique based on the Nonlinear Least Squares

(NLS) criterion. The result is the non-linear model that best

fits the available values by minimizing the related residuals,

as described in Eq. 4.

β
(
Λf

)
= min

a,b,c

(
a · Λb

f + c− Λf

)
, (4)

where the values a, b, c are the coefficients of the power-

relationship, while β
(
Λf

)
is the resulting model. Note that

we considered the best-fit model as the one characterized

by the combination of the lowest Root Mean Square Error

(RMSE), lowest Sum of Squared Errors (SSE), and higher R-

squared metric. Algorithm 1 summarizes the above-described

procedure through pseudo-code.

We highlight that building the model of a jammer in a

real-time adversarial jamming situation is not possible, as it

would require knowledge of the position of the jammer. The

technique we just described is intended to provide a general

model of a jammed communication channel, that could be
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Input: RSS samples;

Result: Propagation model β
(
Λf

)
;

1 Select f0;

2 for n← d1 to dN do
// Data Acquisition

3 while (t < τ ) do
4 samples(n) = acquire_samples();
5 y(n)← FFTK(samples(i));
6 end

// Fast Fading Model Generation
7 m(f0, n)← extract_mean(y(n));
8 setup_fitting_options();
9 distrib(f0, n)← estimate_distribution(m(f0, n));

10 end
// Slow Fading Model Generation

11 for n← d1 to dN do
12 μdistrib(f0, n)←

extract_mean_from_distribution(distrib(f0, n));
13 end
14 setup_fitting_options();
15 [xData, yData]← prepare_Curve_Data(d,

μdistrib(f0, n));
16 β

(
Λf

)← best_fit(xData, yData);

Algorithm 1: Pseudo-code of the jammed channel mod-

eling.

stored in the memory of any device. As demonstrated in

Section VI, when jamming is detected, the general model can

be used at run-time by a mobile receiving device for several

applications (see Section VI).

V. EXPERIMENTAL CASE STUDIES

In this section, we illustrate our experimental setup and

we provide reference case studies for three different fre-

quencies. Specifically, Section V-A outlines the setup of the

acquisition campaign, while Section V-B, Section V-C, and

Section V-D describe our findings when f0 = 500.00 MHz,

f0 = 1, 542.00 MHz, and f0 = 2, 437.000 MHz, respectively.

A. Experimental Setup

Figure 2 shows the system setup adopted for our measure-

ments.

The device adopted as the jammer is an USRP Ettus

Research X310 SDR [26], featuring a UBX160 daughter-

board [27]. This device can emit wireless signals at the peak

power of 20 dBm, in the range [0− 6] GHz, with a maximum

instantaneous bandwidth of 120 MHz. On the receiving side,

we used a MyriadRF LimeSDR, a tiny SDR able to transmit

and receive RF signals in the range [0− 3] GHz, with a maxi-

mum instantaneous bandwidth of 20 MHz. Its limited weight,

i.e., ≈ 49 grams only, also allows for easy and practical

integration with commercial drones. In the experiments, we

used antennas that best fit the selected frequency range. For

instance, for the case study #1 on f0 = 500 MHz, we used both

Jammer Receiver

Figure 2: Experimental setup used for the measurements.

at the transmission and the reception side an antenna ANT500,

provided by Great Scott Gadgets, optimized for RF operations

in the frequency range [0− 1] GHz. We set the antennas gains

to the maximum available value for the transmitter and the

receiver to have the maximum effectiveness in the radiation

(TX side) and conversion (RX side) of the signal’s power.

Note that the deployment strategy allowed us to assume that

there is LoS between the transmitter and the receiver in all

the experiments. Moreover, the nodes were deployed at the

same height—hence restricting our scenario to the 2-D case

deployment.

To drive the behaviour of the SDRs, we used the GNURadio

Development Toolkit [28], running over two general-purpose

laptops (Dell XPS15 9560, equipped with 32GB of RAM

and 8 Intel Core i7700HQ processors running at 2.80 GHz)

running the OS Linux Ubuntu 20.04 LTS. Then, we transferred

all the data acquired on the receiving device to the application

software Matlab (version 2020b) for the following processing.

As reference case studies, we selected three different values

of f0, i.e., f0 = 500.00 MHz, f0 = 1, 575.42 MHz, and

f0 = 2, 437.00 MHz. In addition, we set an FFT size of

K = 1, 024 samples and sample rates of st = 2 MHz on

the transmitter and sr = 5 MHz on the receiver. Finally, we

acquired the RSS samples for a time τ = 10 minutes, at

distances D = {0.5, 1, 1.5, 2, 3.5, 5, 10, 15, 20} meters from

the jamming source. We selected the maximum measurement

distance of 20 meters to not break local regulations on

emission levels. However, note that such a limitation does not

impact on the global validity and applicability of our research,

as we are interested in the propagation model of jamming

signals, and not on its range effectiveness/limitations.

The configuration used for the experiments is summarized

in Table II.

B. Case Study #1: 500.00 MHz (TETRA)

In this case study, we focus on the frequency f0 =
500 MHz, used by several avionic and military technologies,
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Table II: Setup of the experiments.

Notation Value
f0 [500.00, 1, 575.42, 2, 437.00] MHz
τ 10 minutes
D {0.5, 1, 1.5, 2, 3.5, 5, 10, 15, 20} meters
st 2 MHz
sr 5 MHz
B 5 MHz
K 1, 024 samples

such as TETRA [29]. In our experimentation, both the trans-

mitter and the receiver used ANT500 antennas provided by

Great Scott Gadgets [30]. These antennas are designed for

operations in the frequency range [75− 1, 000] MHz, with an

omnidirectional radiation pattern.

We recorded RSS samples at the receiver at 9 locations,

at distances {0.5, 1, 1.5, 2, 3.5, 5, 10, 15, 20} meters from the

jamming source, and we set up the receiver to take all the

RSS samples in the range [497.5− 502.5] MHz. Then, we

applied the fast fading model generation procedure described

in Section IV to find the statistical distribution that best fits

the experimental data. To this aim, we used the Matlab tool

allfitdist [31], a ready-to-use Matlab library that automatizes

the fitting process by testing a wide range of statistical distribu-

tions and selecting the best fitting distribution using the lowest

AIC as a metric, as described in Section IV. We found out that,

independently from the distance from the jamming source,

the statistical distribution characterized by the minimum AIC

on the experimental data is the t-locationScale distribution

(a parameterized t-Student distribution), characterized by the

Probability Distribution Function (PDF) shown in Eq. 5:

p(x|μ, σ, ν) = Γ
(
ν+1
2

)
σ
√
νπΓ

(
ν
2

)
[
ν + (x−μ

σ )2

ν

]−( ν+1
2 )

, (5)

where Γ(◦) is the gamma function, −∞ < μ < +∞ is

the location parameter, σ > 0 is the scale parameter, and

ν > 0 is the shape parameter. Note that the values of μ,

σ, and ν at specific locations are different, as they depend

on the distance from the jamming source and the effect of

the channel. Figure 3 shows the t-locationScale distributions

that best fit the gathered experimental data on the frequency

f0 = 500 MHz, across the tested locations.

Following the Slow Fading Model Generation process de-

scribed in Section IV, we applied the non-linear regression

techniques based on the NLS criterion, and we found the

power-law model that best fits the mean values of all the

distributions, described in Eq. 6 and shown in Figure 4.(
a · Λb

f + c− Λf

)
=

(
−7.205 · Λ0.5154

f − 56.04
)
. (6)

C. Case study #2: 1, 575.42 MHz (GPS)

In this case study, both the transmitter and the receiver

used the ANT500 antennas, similarly to the case study #1.

Despite these antennas are designed for optimal operations

in the frequency range [75− 1, 000] MHz, they demonstrated

Figure 3: Fast Fading model generation at f0 = 500 MHz.

Each PDF represents the distribution that best fits the exper-

imental data. For each location, the best-fit distribution is a

t-locationScale.

Figure 4: Slow Fading Model Generation at f0 = 500 MHz.

The red line corresponds to the power-law model that best fits

the experimental data (black crosses).

acceptable behavior also on this frequency, as demonstrated

by recent successful GPS spoofing attacks (e.g., the one

in [32]) and large-scale reverse engineering attacks (e.g., the

one in [33]) realized through these antennas on the GPS

(f0 = 1, 575.42 MHz) and IRIDIUM (1, 626.27 MHz) com-

munication channels, respectively.

We set up the receiver to take all the RSS samples in

the range [1, 572.92− 1, 577.92] MHz and, similarly to the

case study #1, we recorded RSS samples at the receiver at

9 locations, at distances {0.5, 1, 1.5, 2, 3.5, 5, 10, 15, 20} me-

ters from the jamming source.

Then, by using the Matlab tool allfitdist previously de-
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scribed, we applied the fast fading model generation procedure

described in Section IV to find the statistical distribution that

best fits the experimental data. Our result is very similar

to the Case Study #1. Indeed, as shown in Figure 5, we

found out that, independently from the distance from the

jamming source, the statistical distribution characterized by the

minimum AIC on the experimental data is the t-locationScale
statistical distribution (recall Eq. 5 in Section V-B).

Figure 5: Fast Fading Model Generation at f0 =
1, 575.42 MHz. Each shape represents the distribution that

best fits the experimental data. For each location, the best-fit

distribution is a t-locationScale.

Then, in accordance with the Slow Fading Model Gener-
ation process described in Section IV, we applied the non-

linear regression techniques based on the NLS criterion, to

find the power-law model that best fits the mean values of all

the distributions, described in Eq. 7 and shown in Figure 6.(
a · Λb

f + c− Λf

)
=

(
41.92 · Λ−0.2461

f − 124.6
)
. (7)

D. Case study #3: 2, 437.00 MHz (Wi-Fi)

Differently from the previously described scenarios, in this

case study both the transmitter and the receiver used the

VERT2450 Dual-band omnidirectional vertical antennas, pro-

vided by Ettus Research [34]. These antennas are optimized to

operate in the frequency ranges [2, 400.00− 2, 480.00] MHz

and [4, 900.00− 5, 800.00] MHz, with an omnidirectional

radiation pattern, at 3 dBi gain.

Since this case study aims to evaluate the jamming prop-

agation model on Wi-Fi typical frequencies, we selected

the most uncongested channel, i.e., the channel 6, with

centre frequency f0 = 2, 437.00 MHz. In line with the

previous setup, we configured the receiver to take all the

RSS samples in the range [2, 434.5− 2, 439.5] MHz and

we recorded RSS samples at the receiver at 9 locations,

Figure 6: Slow Fading Model Generation at f0 =
1, 575.42 MHz. The red line corresponds to the power-law

model that best fits the experimental data (black crosses).

at distances {0.5, 1, 1.5, 2, 3.5, 5, 10, 15, 20} meters from the

jamming source.

Then, by using the Matlab tool allfitdist previously de-

scribed, we applied the fast fading model generation procedure

described in Section IV to find the statistical distribution that

best fits the experimental data.

Our result is very similar to the case studies previously

discussed. Indeed, as shown in Figure 7, we found out that,

independently from the distance from the jamming source, the

statistical distribution characterized by the minimum AIC on

the experimental data is the t-locationScale distribution (recall

Eq. 5 in Section V-B).

Figure 7: Fast Fading Model Generation at f0 =
2, 437.00 MHz. Each shape represents the distribution that

best fits the experimental data. For each location, the best-fit

distribution is a t-locationScale.

1568



Then, in accordance with the Slow Fading Model Gener-
ation process described in Section IV, we applied the non-

linear regression technique based on the NLS criterion, to find

the power-law model that best fits the mean values of all the

distributions, described in Eq. 8 and shown in Figure 8.(
a · Λb

f + c− Λf

)
= ·

(
331.9 · Λ−0.02382

f − 403.1
)
. (8)

Figure 8: Slow Fading Model Generation at f0 =
2, 437.00 MHz. The red line corresponds to the power-law

model that best fits the experimental data (black crosses).

Summary. The main finding of our experimental campaign

is that, independently from the distance from the jamming

source and the frequency, the RSS samples of the jamming

signal received at a specific location over a given time frame

follow the same statistical distribution, i.e., a t-locationScale.

When comparing the best-fit distributions on the same fre-

quency over different locations at increasing distance from the

jamming source, the mean value of the distributions decreases

due to the strong dependency of the received jamming power

from the space travelled. The mathematical law that best fits

this behaviour is a power law, characterized by coefficients

(a, b and c) depending on the specific operating frequency.

Note that a power-law with such coefficients decays (with

distance) quicker than commonly-assumed models (e.g., the

square law), further demonstrating that signal propagation

in real outdoor scenarios is severely affected by distortion

phenomena that decrease its area coverage.

VI. USE-CASES

In this section, we demonstrate the applicability and utility

of the results presented in Section V, through reference use-

cases. Specifically, Section VI-A applies the results previously

introduced for jammer localization, while Section VI-B shows

how mobile entities, such as drones, can leverage the model

previously introduced to navigate in an area under jamming

through a dead reckoning navigation system. Note that these

use-cases are only two of the many possible applications of

the before-introduced model, and they do not limit the appli-

cability of our results to further applications (e.g., jamming

detection and self-localization, to name a few).

A. Use-case #1: Jammer Localization

We consider the scenario depicted in Figure 9, constituted

by a drone (reported as a triangle) moving with a speed of

10 m/s (36 Km/h), willing to identify the location of a jammer

(reported as a diamond). We assume that the jammer aims to

Figure 9: Jammer localization use-case. A drone (triangle)

aims to localize a jammer (diamond) active in given area

of interest (orange circle), by moving on the bounds of the

jammed area (black dots).

deny the reception of GPS signals in a given area of interest,

e.g., to protect a sensitive target from being approached by

GPS-aided devices. Therefore, we reasonably assume that the

jammer emits jamming signals constantly on the frequency

f0 = 1, 575.42 mHz at its maximum power level (20 dBm),

to maximize area coverage.

When the drone is located outside the jammed area, it

leverages a GNSS technology (e.g., the GPS) to follow the

path towards its intended destination. At a given time, the

drone detects to be subject to a jamming attack. The drone can

detect jamming through different techniques. For instance, the

drone can identify the lack of GPS reception. Alternatively,

it can evaluate the instantaneous RSS and detect that the

mean value of the power received on the GPS communication

channel exceeds a given threshold Pω (Pω = −97.8 dBm for

the GPS, based on [35]). At this time, the drone returns to

the last stable position by using an inertial navigation system

and activates a jammer localization procedure based on the

channel model presented in Section IV.

In line with the proposal in [21], we model the jammer lo-

calization system through a closed loop control system, where

the drone adopts a Proportional-Integral-Derivative (PID) con-

troller to compensate the error on the power estimation, as
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depicted in Figure 10. We denote r(t) as the real-time input

of the PID (coincidental with rss(t)), c(t) as the control signal

generated by the PID controller, y(t) as the output variable,

and e(t) = y(t)− r(t) as the steady-state error. To make r(t)
dimensionally consistent with the other parameters in the PID,

we assume a conversion factor κ = 1 · m
Watt∗s . The behaviour

P

I

D

Figure 10: PID Controller used for jammer localization. The

drone applies the PID to find the locations where it experiences

a constant received jamming power Pω .

of the PID is modelled through Eq. 9.

c(t) = Kp · e(t) +Ki ·
∫ t

0

e(τ)dτ +Kd
∂

∂t
e(t) (9)

being Kp, Ki, and Kd the proportional, integral, and derivative

gains of the PID, respectively, tuned with the the Ziegler-

Nichols method [36], and Kc = 1 being the critical gain factor,

empirically estimated.

Note that the drone aims to identify the jammer’s location

as the centre of any ideal circumference, where a receiver

experiences a constant profile of the received jamming power.

Given that the drone should be able to move towards a specific

point in space where it expects constant received power, we

selected such circumference as the one where r(t) = Pω , so

to be able to still receive GPS signal.

To estimate the power received by the jammer at a given

location, the drone uses the experimental model described in

Section IV, and in particular, the one with the parameters

defined for the GPS technology, described in V-C. Using such

a model and the PID logic described in Figure 10, the drone

obtains the control signal c(t), that instructs it on the new posi-

tion where to move to experience r(t) = Pω . Therefore, using

the GPS (still receivable based on the condition r(t) = Pω),

the drone moves to such a location, acquires the signal r(t),
and computes the error e(t) = y(t)− r(t). Such error is used

as the input to generate a new estimation, and the process

repeats as explained above.

At each step, the drone acquires new GPS coordinates

of points experiencing the same signal power Pω , and it

constructs an increasing arc of the circumference describing

the bounds of the jammed area. Then, the drone uses the Pratt’s

algorithm to estimate the jammer position (xJ , yJ) starting

from a set of coordinates of one of its arc [37]. Specifically,

the Pratt’s algorithm fits a circle to a set of data points on a

plane, and it returns the circle centre and the radius. Let us

define as posJi = (xJi , yJi) the estimated jammer position

through the Pratt’s algorithm at the step i of the algorithm.

The whole process stops when the standard deviation of the

last ten estimated jammer positions is less than a pre-selected

convergence threshold β = 0.01.
To verify the effectiveness of the described strategy, we

set up 1, 000 simulations with different channel conditions,

and we evaluated the jammer position estimation error while

varying the number of acquired FFT windows (M ). We

summarize the results of the experiments in Figure 11.

Figure 11: Jammer position estimation error as a function of

the number of channel windows (radio samples) M acquired

by the drone at each channel acquisition.

The results show that the jammer localization error sig-

nificantly decreases by increasing the consecutive number of

FFT acquired from the (jammed) communication channel (M ).

Indeed, the higher the number of channel windows considered

at each step, the more precise the wireless channel estimate,

and the higher the precision in the jammer location estimation.

Considering only 2, 000 FFT channel windows (i.e., acquiring

the channel for ≈ 0.41 seconds at each step), the above-

described algorithm localizes the jammer with a precision of

≈ 0.29 meters, by requiring on average only 72 steps by

the drone. Overall, these results enhance the findings in the

reference paper [21], where the authors localized the jamming

source using simulations carried out through a simplified

propagation model based on the ideal Friis free-space loss

model (Section VII will provide more details on this aspect).

B. Use-case #2: Navigating a Jammed Area
The model described in Section IV can also be used to allow

a mobile entity (e.g., a drone) to navigate autonomously in the
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jammed area, as proposed in [38].

In line with Section VI-A, we assumed a constant jammer,

emitting the highest possible power on the GPS frequency

(f0 = 1, 575.42 MHz). As depicted in Figure 12, the approach

described by the authors in [38] first detects the jamming (1),

then localizes the jammer through a method similar to the one

depicted in Section VI-A (2), and then uses the jamming signal

to navigate towards its location, by following a direction that

maximizes the received jamming power (3). We hereby focus

only on step (3), which includes applying the experimental

jamming propagation model.

Figure 12: Dead reckoning Navigation. The drone (triangle)

enters the jammed area (orange circle) and navigates from the

entry point (square) to the jammer location (diamond) using

the jamming signal as a reference.

The navigation procedure requires that, after localizing the

jammer, the drone continues acquiring RSS samples from the

channel, to obtain estimates of its relative distance to the
jammer. Note that, although the transmitted power and the

jammer’s antenna gain are likely unknown to the drone, the

important information for navigation purposes is the variation

of the received power when the drone moves closer-to/further

from the jammer. Specifically, before entering the jammed

area, the drone uses our model to estimate the power that

should be received at a distance d = 0 m from the jammer,

namely PE . By knowing the drone’s location and the jammer

estimated position, the drone can compute its relative distance

from the jammer. Moreover, it can use the power received at

its location to calculate the received power level that it should

experience on the jammer location, by inverting the model in

Eq. 7.

Then, the drone navigates across the jammed area by using a

PID controller following the logic in Figure 10 (Section VI-A).

However, differently from the previous use-case, where the

PID instructed the drone to move on the interference with

constant RSS, now the PID compensates the drone’s position

error at each step to move towards the direction that maximizes

the RSS. The process stops when the drone experiences an

average RSS equal (or higher) than PE , i.e., the RSS expected

on the jammer location.

In our experiments, in line with the experimental campaign,

we set up a jamming power of 20 dbm, guaranteeing a jammed

area of dt ≈ 53.43m. On the receiver side, we set the drone

speed to 10 m/s, and we configured the PID with the same

parameters reported in Section VI-A. We assumed that the

receiver analyzes the communication channel by applying

the FFT over K = 1, 024 samples, and a sample rate of

sr = 5 MHz (the time to acquire N samples can be obtained

as t = N · 1
sr
·K). Then, we ran 1, 000 simulations where we

applied the described navigation procedure to navigate towards

the jamming source, using the devised experimental model.

The results of the assessment are summarized in Table III.

To evaluate the performance of the navigation scheme, we

assumed that the mission of the drone is to reach the jammer

location, and we reported the average distance (with the 95 %

confidence interval) between the jammer location and the

location where the navigation stops (rss(t) > PE).

Table III: Jammed Area Navigation Performance. We assume

that the mission of the drone is to reach the jammer location,

and we report the distance between the jammer location and

the location where the navigation stops.

Acquired Channel
Windows [M ]

Time to Acquire
Windows [s]

Avg. Distance from
Target [m]

200 0.04 38.20± 1.09
400 0.08 19.97± 1.37
600 0.12 12.70± 1.21
800 0.16 6.13± 0.89
1000 0.21 3.22± 0.59
1200 0.25 2.44± 0.47
1400 0.29 1.99± 0.37
1600 0.33 1.48± 0.22
1800 0.37 1.37± 0.14
2000 0.41 1.28± 0.06

Note that the higher the number of FFT windows acquired

from the (jammed) communication channel, the more accurate

the channel model, and the more effective the navigation.

Acquiring only 200 FFT windows per location, the navigation

algorithm stops prematurely at a distance that, on average,

is ≈ 38 meters from the jammer location. The accuracy of

the system improves by acquiring more channel windows,

and thus, by sampling the channel for more time (see the

second column in Table III). Sampling 2, 000 FFT windows

(in ≈ 0.41 s), we stop at a location that is on average ≈ 1.28 m

from the jammer location, achieving the planned task.

VII. COMPARISON

We now discuss the relationship of our findings with

the current literature on communication channel modelling.

Currently available studies on the modelling of a generic

communication channel, such as the one in [7], identified that

a generic outdoor communication channel could be modelled

through an extremeValue statistical distribution. At the same

time, previous studies on jammer localization such as the
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ones in [21] and [38] assumed the ideal Friis equation to

approximate channel conditions.

To evaluate the mismatch of such models when applied to

real data, we selected a reference scenario, and we compared

the performance of the three models. Specifically, as in Sec-

tion VI, we selected the GPS channel (f0 = 1, 575.42 MHz).

We assumed mostly the same scenario and parameters consid-

ered for the analyses in Section VI. The only main difference

is that the PID controller is tested in three different scenarios,

where in each scenario it uses one of the three models

(t-locationScale, extremeValue, Friis equation) to keep the

receiver on the circumference with constant receiving power

Pω (use-case #1), and to navigate towards the location with

the higher expected RSS PE (use-case #2).

Note that, to apply the model presented in [7] to our data,

we considered the same modelling technique discussed in

Section IV, and we found the parameters of the extremeValue
distribution that best model our real data. Table IV reports

the average error achieved by each of the three models in

estimating the radius of the jammed area and in navigating

towards the location of the jammer, by assuming the reference

number of M = 2, 000 acquired channel windows per step.

Table IV: Jamming radius estimation error and on-target

navigation error when assuming that the jammed channel is

modelled with Friis, t-locationScale, and extremeValue models

(M = 2, 000), respectively.

Channel Model Friis extremeValue t-locationScale
Avg. Jamming

Radius Error [m]
117, 496.57 0.86 0.01

Avg. Distance
From Jammer [m]

1, 958±
15.85

1.88± 0.48 1.29± 0.06

First, we note that the Friis model assumed by the au-

thors in [21] leads to significant errors when applied to

real data, making such model unsuitable for real jammer

localization applications. Moreover, we note that the error de-

rived by assuming an extremeValue-modelled channel (rather

than a t-locationScale-distributed one) provides slightly worse

performance—0.86 m of error over a jamming radius of ≈
53.43 m and, ≈ 1.88 m of error for the navigation use-case. On

the one hand, these findings highlight that the t-locationScale
is the correct distribution when dealing with jammed channels.

On the other hand, the mismatch between the two models

is limited. This finding implicates that modelling a jammed

channel as a regular communication channel (following an

extremeValue distribution, as recommended by [7]) introduces

a slight error, translating, in turn, into slightly degraded per-

formance (more time to localize the jammer, larger navigation

time, increased energy consumption).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an experimental model for a

communication channel subject to jamming. Our methodology

is rooted on an extensive experimental campaign, where we

gathered real jamming data for three communication frequen-

cies representative of valuable services (Tetra, GPS, and Wi-

Fi) over several distances at various locations. Processing

the collected data, we found the best statistical distributions

modelling both fast fading and slow fading effects on the

identified channels when subject to jamming. Our investigation

revealed that, independently from the selected frequency, fast

fading on a jammed communication channel can be best

modelled through a t-locationScale distribution. In contrast,

the slow fading exhibits a behaviour that is best modelled

through a power law. Among the many possible applica-

tions, we discussed two use-cases of the presented model,

i.e., jamming localization and dead-reckoning navigation. We

showed that, using our model, a mobile receiving device

(e.g., a drone) can localize a jammer with a precision of

≈ 29 cm, and that it can reach the jamming source with

an accuracy of ≈ 1.28 meters. We also compared our new

model with statistical models available from the literature,

showing the superior performances of our proposal. Finally,

the data of our experimental campaign have been released as

open-source [11], to allow Academia and Industry to validate

and refine our results, as well as apply our findings to new

use-cases. In the future, we plan to extend our measurement

campaign with data acquired through an SDR carried out by

a drone, so to collect the data for an entire 3-D plane at low

granularity.
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