
Provisioning with Fine-grained Affinity
for Container-enabled Cloud-edge System

Dingkun Yang, Nan Zhao, Hongshuang Ma, Jiasheng Yang

Jiangsu Electric Power Information Technology Co. Ltd, Jiangsu Nanjing 210000, China

Email: {{yangdk1 js, mhshuang, yjshengshe}@126.com, 784526430@qq.com}

Abstract—Containerization effectively decouples the applica-
tions and facilitates those user-defined dependencies for extreme
elasticity via existing container management frameworks. How-
ever, the variance occurs among container-enabled hosts at edges,
since their copies of images and libraries, and available resources
are quite different. Then, even for the same container, the costs
of retrieving the dependency also vary over hosts, since existing
mechanism forces each host to retrieve the missing parts from the
central repository only upon its own status. Although previous
researches have optimized the management of dependencies, the
deployment mainly focuses on the entire image. Instead, upon the
fine-grained difference on dependencies, we propose to minimize
the overall latency of both retrieving the missing parts and the
executions under constrained resources. We propose an integer
linear program and then design a randomized algorithm to select
suitable hosts to deploy the containers. The probability calculated
in algorithm shows the preference and the affinity of hosts, and is
derived from the status of fine-grained dependencies. Via rigorous
proof, the result of our algorithm is concentrated on its optimum
with high probability. Extensive simulations confirm that our
algorithm outperforms the alternatives up to 44% regarding the
average completion time of containers.

I. INTRODUCTION

Traditionally, virtual machine is the mainstream deployment

approach for applications, as it provides strictly isolated envi-

ronments over heterogeneous hosts [1, 2]. However, hardware

virtualization has various limitations, such as weak resilience,

long startup time, and low resource utilization [3–5]. To im-

prove system elasticity and application performance, operating

system-level virtualization, better known as containerization,

becomes an attractive alternative for deploying and running the

applications. Essentially, containerization decouples the appli-

cations from the operating system, shrinking the deployment

sizes by order of the magnitude for better efficiency.
However, provisioning applications over container-enabled

hosts at edges is non-trivial and faces multiple challenges:
First and foremost, each container-enabled host is individ-

ual, i.e., existing mechanisms for those container management

frameworks retrieve the missing dependencies for each host

only upon its current status [6–8]. Then, since the status of

stored images and libraries, as well as available resources

varies over hosts, shown in Table I, even deploying the same

container, the cost regarding retrieving the dependencies also

varies. Therefore, it is preferred to deploy the containers to the

hosts with sufficient dependencies stored, in order to decrease

the costs for retrieving the missing parts after the deployment.
Second, those container-enabled hosts deployed at the edge

of the network, e.g., within an edge cluster [9], are resource-

TABLE I: Variance over Container-enabled Hosts

Variance (Status of Dependencies and Rsources)

Hosts Image Layer1 Size (GB) CPU Cores RAM (GB)

Inspur 1 316 18 48 73
Inspur 2 169 7.4 40 115
Inspur 3 143 8 48 91

PowerEdge 1 163 16 56 93

constrained [10]. If too many containers are deployed within

a few hosts, although the cost for retrieving necessary missing

dependencies is optimized, the resource-constrained hosts fail

to support such deployment. Furthermore, due to heteroge-

neous capabilities over the hosts, the execution latency for the

same container varies as well. Then, considering both capacity

and capability of heterogeneous container-enabled hosts, the

overall latency for the deployment and execution should be

optimized simultaneously for the whole system.

Third, all the hosts within an edge cluster communicate with

the central repository for necessary missing dependencies over

wide area network [11], which often incurs heavy traffic. For a

batch of containers needed to be deployed, the overall cost of

retrieving missing dependencies should be optimized in terms

of the traffic and the bandwidth usage over wide area network,

instead of individual optimization, which is determined by the

deployment of the containers and current status of hosts.

Existing research falls insufficient for addressing the afore-

mentioned challenges. Some [12–15] have studied the opti-

mization for container deployment, but fail to consider current

status of images and libraries. Others [6, 16–18] have designed

the mechanism for runtime optimization for containers, but fail

to consider the minimization of retrieving missing dependen-

cies. And the rest [19–21] have proposed the provisioning of

edge resources, but fail to combine heterogeneous container-

enabled hosts with fine-grained dependency status.

In this paper, we propose to minimize the overall latency

regarding both retrieving the missing dependencies among all

container-enabled hosts and the executions of all containers,

under the consideration of constrained resources. After that,

we formulate such optimization problem as an integer linear

program, whose objective is to minimize the overall latency

and the constraints consider the capacity of resources at edges.

Due to the NP-hardness of our proposed problem, we propose

to relax the domain of the problem, and we use the results

1“Image Layer” is used for Docker, i.e., a line in a Dockfile defines a layer.
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solved from the relaxed problem as a guidance for container

deployment. Essentially, the results solved are a series of reals,

and they actually show the preference of all candidate hosts

upon current status of dependencies and available resources.

By using such fine-grained affinity between the containers and

hosts upon dependencies and available resources, the overall

latency is optimized. We thus use such reals as the probabilities

to deploy all of the containers to these hosts.

Via rigorous proof, the result obtained from our proposed

algorithm is concentrated on its optimum with high probability,

based on Martingale Analysis. Furthermore, the violation in

terms of the resource constraints is also studied after applying

our designed algorithm. Extensive simulations confirm that our

designed algorithm Clipper outperforms the alternatives up to

45.9% and 44% in terms of the deployment efficiency and

average completion time, respectively, and manifests excellent

stability under skewed package distribution.

II. RELATED WORK

Since the introduction of Docker, many container orches-

tration systems have become available [13, 22, 23]. However,

these container schedulers are agnostic to the container image,

leading to non-trivial deployment latency [12]. We investigate

the literature and classify them into two categories: optimiza-

tion for container deployment and runtime optimization.

A. Optimization for Container Deployment

PASch [12] used the mapping function to map the container

to two package-affinity nodes, containing the largest package

required by the container. The node with the least load would

spawn the container unless the node’s load exceeded the

pre-defined threshold. If so, the scheduler would then fall

back to the least loaded scheduling policy and dispatch the

container to the least load node. Docker Swarm [13] changed

the default scheduling policy from bin-packing to leverage

the potentially under-utilized resources. Such spread strategy

attempted to schedule a container to the least loaded node

based on assessing the resources available on cluster nodes.

Mao et al. [14] analyzed the default spread strategy and

found it is insufficient to leverage heterogeneous resources.

They proposed DRAPS, a resource-aware placement scheme

to improve system performance in the heterogeneous cluster.

Boza et al. [15] analyzed the impact of scheduling strategies

on container performance from two dimensions of container

initialization time and container execution performance. They

further revealed that the performance of containerized appli-

cations is closely related to deployment strategies.

However, they fail to propose performance-aware deploy-

ment algorithms. Instead, we propose Clipper for optimizing

average completion time by considering container deployment

efficiency and container execution performance.

B. Runtime Optimization for Containers

Oakes et al. [16] proposed Pipsqueak to improve function

launch times by pre-importing the packages required by the

function. As the popularity of packages changed rapidly, the

(a) Various Images (b) Various Strategies

Fig. 1: Cost regarding the Deployment for Containers

pre-import approach may cause memory thrashing, leading to

low resource utilization and degraded application performance.

Oakes et al. [17] also built SOCK, which used lightweight

isolation primitives to reduce container initialization latency

and designs a generalized Zygote-provisioning strategy to re-

duce the initialization cost of the runtime environment. SOCK

potentially assumed that container images are already available

on the assigned nodes and ignores container deployment costs.

Zheng et al. [6] designed Wharf, which shared images through

a shared storage layer to reduce network and storage overhead

when running large-scale containerized applications. Wharf

supported concurrent image retrieval and data access through

a layer-based lock mechanism, potentially incur data syn-

chronization overhead. Wharf provided a promising solution

for reducing container deployment costs in large-scale data

processing scenarios. FogDocker [18] observed that a bloated

container image might degrade the deployment efficiency.

However, only a small part of packages are required during

container startup. Therefore, they propose restructuring the

container image and downloading only the necessary packages

when creating the container. The lazy retrieval mechanism

may incur high runtime overhead when the available network

bandwidth is scarce. As a result, we propose Clipper.

III. BACKGROUND AND MOTIVATION

Cost for Container Deployment. The container image is

structured by several layers. When we send a request to the

Docker daemon for spawning a new container from the specific

container image, the Docker daemon first checks whether the

required container image is available locally. If not, it retrieves

the image manifest from the Docker registry, then downloads

and extracts the missing image layers to local storage. Once

the container image is available locally, the Docker daemon

will instantiate a container from the specific container image to

run the application code. To quantify the deployment costs of

container images, we remove all image layers on the node and

build a private registry to avoid the impact of pull rate limits of

Docker Hub2. As shown in Fig. 1(a), when the available band-

width is scarce (e.g., 0.1Gbps), the average deployment time of

six representative container images is as high as 34.68s. When

the available bandwidth is increased to 1Gbps, the deployment

costs of container images drop rapidly. Unfortunately, deploy-

ment performance gains decrease quickly when the available

bandwidth beyond the best trade-off point. The main reason

2Docker Hub: https://hub.docker.com/. Accessed Feb 2021.
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Fig. 2: Dynamic Resource Usage Patterns

is that different image layers within the same container image

are dependent during extraction. Therefore, the extraction time

depends on the single-core processor’s restricted clock speed,

which dominates the deployment process, especially when the

available bandwidth is sufficient for retrieving missing parts.

Case Study. As shown in Fig. 1(b), The container image

of the containerized application is structured by layer-1, layer-

2, and layer-3. Node-1 caches layer-1 and layer-2, and node-2

caches layer-3. We assume the retrieval costs of layer-1, layer-

2, and layer-3 are 2s, 3s, and 4s, respectively. Scheduler-I

assigns the application to node-1, upon fine-grained package

affinity. Then, node-1 needs to retrieve layer-3 from the private

registry. The deployment cost is 4s. Scheduler-II deploys the

application to node-2, based on the largest package required

by the application. The deployment cost is 2s + 3s = 5s.

The illustrative example shows that the deployment strategy

with fine-grained package affinity achieves better deployment

efficiency compared to the simple greedy strategy.

Dynamic Resource Usage Patterns. Fig. 2(a) shows the

GPU memory of ResNet-50 model training on one NVIDIA

Tesla V100 accelerator during a 15s snapshot. The maxi-

mum and minimum usages of GPU memory are 23.4GB and

0.31GB. The GPU memory usage during the model training

only reaches peak resource usage at few moments. Although

the NVIDIA Tesla V100 is equipped with 32GB memory

capacity, the static resource allocation strategy based on peak

resource usage can only train one model exclusively, leading

to a significant waste of expensive resources and degraded

overall application performance. Unlike static policy, dynamic

resource allocation strategy based on cgroups primitives [24]

can allocate resources according to real-time resource demands

to exploit potential utilization and parallelism [25].

Case Study. To explore the impact of the resources avail-

able on the node on application performance, we train the

LeNet-5 model, the logistic regression model and write an

OpenMP implementation to find all prime numbers up to 109

under different resource constraints. As shown in Fig. 2(b),

resource-intensive applications can seamlessly use idle re-

sources to improve parallelism. Therefore, the execution per-

formance of compute-intensive applications is almost linearly

correlated with available computing resources.

Summary. Primary case studies have two implications for

designing efficient container scheduling strategies. First, the

deployment strategy with fine-grained package affinity that

perceives the hierarchical structure of the container image may

achieve the best deployment efficiency. Second, scheduling

containers to nodes with sufficient available resources could

exploit potential parallelism to improve application execution

performance. Therefore, we consider the joint optimization of

deployment efficiency and execution performance to minimize

the average completion time of containerized applications.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

Let S denotes the collection of containerized applications.

The container-s ∈ [S]3 has the following attributes: Cs, the

least number of CPU cores required to meet the minimum

computing resource requirements; Ms, the amount of memory

size required to execute; Es, the execution time on a single

CPU core, which can be obtained from historical information

or application performance modeling [26]; and Is, the col-

lection of image layers for creating the container-s. Besides,

we have Is ⊆ I , where I denotes the universe collection of

all container image layers. For each image layer i ∈ I , li
represents the retrieve cost of the image layer i. Let V denotes

the collection of resource nodes. The node-v ∈ [V ] also has

the related attributes: Cv , the number of available CPU cores;

Mv , the amount of available memory size; and Iv , with Iv ⊆ I ,

the collection of image layers that are already available.

We model the mapping between the container-s and the

node-v with binary decision variable bsv: bsv = 1, if the

container-s is deployed on the node-v; bsv = 0, otherwise.

For the node-v, we define the number of allocated CPU cores

as C(v) =
∑

s∈[S] Cs · bsv , the amount of allocated memory

size as M(v) =
∑

s∈[S] Ms · bsv , the total deployment time on

the node-v as D(v) =
∑

s∈[S]

∑
i∈Is\Iv li · bsv . Considering

the characteristics of elastic resource allocation, we define the

total execution time of containerized applications on the node-

v as E(v) = 1
Cv

∑
s∈[S] Es ·bsv . We denote the processing time

of the node-v as the sum of deployment time and execution

time on the node. In order to optimize the average application

completion time, we minimize the maximum node processing

time. The detailed description is illustrated as follows:

[min] max
v

⎧⎨
⎩

∑
s∈[S]

⎛
⎝ ∑

i∈Is\Iv
li · bsv +

Es

Cv
· bsv

⎞
⎠
⎫⎬
⎭

s.t. C1 : C(v) =
∑
s∈[S]

Cs · bsv, (1)

C2 : M(v) =
∑
s∈[S]

Ms · bsv, (2)

C3 : C(v) ≤ Cv, ∀ v ∈ [V ] (3)

C4 : M(v) ≤Mv, ∀ v ∈ [V ] (4)

C5 :
∑
v∈[V ]

bsv = 1, ∀ s ∈ [S] (5)

C6 : bsv ∈ {0, 1}, ∀ s ∈ [S], v ∈ [V ] (6)

Resource capacity constraints (3) and (4) guarantee that the

resource allocated by the node-v cannot exceed the available

3We define [S] = {1, 2, . . . , |S|}, where S can be different quantities.
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resource capacity. The scheduling constraints (5) and (6)

guarantee that each container is assigned to one and only

one node. Unfortunately, the min-max ILP problem has been

proven to be an NP-hard problem [27]. To effectively obtain

the approximate optimal deployment decisions, we use linear

programming relaxation and randomized rounding tools to

design the randomized algorithm in the next section.

V. DESIGN RANDOMIZED SCHEME

The key to minimize the maximum node processing time

is to construct the optimal mapping between containers and

resource nodes. Unfortunately, due to the inherent computa-

tional complexity of the ILP, we usually cannot obtain the

optimal solution in a reasonable time, even for a moderate

scale problem. Therefore, we use the linear programming

relaxation and randomized rounding techniques to obtain the

approximate optimal ILP solution in polynomial time.

Linear Programming Relaxation. To obtain effective

scheduling scheme in polynomial time, we relax the ILP

to linear program (LP) by removing the constraint that the

decision variables have to take value from binary values.

Specifically, we relax the domain of decision variables from

the binary domain {0, 1} to the probability interval [0, 1]. The

relaxed model is illustrated as follows:

[min] max
v

⎧⎨
⎩

∑
s∈[S]

⎛
⎝ ∑

i∈Is\Iv
li · psv +

Es

Cv
· psv

⎞
⎠
⎫⎬
⎭

s.t. C1 : C(v) =
∑
s∈[S]

Cs · psv,

C2 : M(v) =
∑
s∈[S]

Ms · psv,

C3 : C(v) ≤ Cv, ∀ v ∈ [V ]

C4 : M(v) ≤Mv, ∀ v ∈ [V ]

C5 :
∑
v∈[V ]

psv = 1, ∀ s ∈ [S]

C6 : psv ∈ [0, 1], ∀ s ∈ [S], v ∈ [V ]

Through existing efficient algorithms, we can find the op-

timal fractional solution of the LP in polynomial time. Then

we take the fractional solutions as the guidance to design the

randomized rounding scheme for container deployment.

Randomized Rounding Scheme. We consider the frac-

tional solution of the LP as the preference of the container

to choose resource node. More specifically, the value of

psv indicates the correlation between the container-s and the

node-v. For any container-s ∈ [S], we randomly select a

value rs from (0, 1]. For completeness, we let ps0 = 0. If

rs ∈
(∑v−1

j=0 p
s
j ,

∑v
j=0 p

s
j

]
, v ∈ [V ]. Then bsv = 1, otherwise,

bsv = 0. The randomized rounding scheme sensibly ensures

the scheduling constraints, and indicates the preference of

the container to resource nodes simultaneously. The detailed

scheduling algorithm is shown in Algorithm 1. Line 1 initial-

izes the scheduling decision with empty set. Line 1 finds the

fractional solution of LP with the polynomial algorithm. Then

Algorithm 1 Container deployment algorithm.

Require: The container-s and its attributes, ∀s ∈ [S];
The resource node-v and its attributes, ∀v ∈ [V ].

Result: Scheduling decision.

Result ← {}
{psv} ← LP solver
foreach container-s in [S] do

rs ← random(0, 1)
foreach node-v in [V ] do

if rs ∈ (
∑v−1

j=0 p
s
j ,
∑v

j=0 p
s
j ] then

bsv = 1;

else
bsv = 0;

foreach container-s in [S] and node-v in [V ] do
if bsv == 1 then

Result ← Result ∪ {< s, v >};
return Result

we use the randomized rounding scheme to obtain the original

problem’s integer solution. Finally, we summarize and return

the scheduling decision to real container deployment.

VI. ANALYSIS OF THE RANDOMIZED ALGORITHM

In this section, we prove that the deployment scheme of

Clipper concentrates on the optimal solution with high prob-

ability, i.e., 1−O(e−t2), where t is the concentration bound.

First, we show that the difference between the completion

time of node-v contributed by container-s and its expectation

could be bounded through Martingale analysis. Then, we use

Azuma’s inequality to illustrate the gap between the feasible

and optimal solutions. For ease of description, we denote SOL
as the solution solved by Clipper and OPT as the optimum.

Theorem 1. Pr [SOL−OPT ≤ t] ≥ 1−O(e−t2).

Proof. Firstly, we denote the contribution of each container-s
to the load of node-v as follows:

T s
v =

⎛
⎝ ∑

i∈Is\Iv
li +

Es

Cv

⎞
⎠ ∗ bsv = Zs

v ∗ bsv, (7)

where Zs
v is a constant value when given container-s and node-

v. According to randomized rounding strategy in Algorithm 1,

we have Pr[bsv = 1] = psv . The expectation of T s
v is

represented as follows:

E[T s
v ] = E[bsv] ∗ Zs

v = (Pr[bsv = 1] ∗ 1 + 0) ∗ Zs
v = psv ∗ Zs

v .
(8)

For each node-v, the difference between the load contributed

by container-s, i.e., T s
v and its expectation, i.e., E[T s

v ] is

defined as follows:

Ds
v = T s

v − E[T s
v ]. (9)

We define the sum of Ds
v as L

|S|
v , i.e.,

L|S|v =

|S|∑
s=1

Ds
v = L|S|−1

v +D|S|v . (10)
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The expectation of Ls
v , on the condition L1

v, L
2
v, · · · , Ls−1

v is

expressed as follows:

E[Ls
v|L1

v, L
2
v, · · · , Ls−1

v ]

(10)
= E[Ls−1

v +Ds
v|L1

v, L
2
v, · · · , Ls−1

v ]

= E[Ls−1
v |L1

v, L
2
v, · · · , Ls−1

v ] + E[Ds
v|L1

v, L
2
v, · · · , Ls−1

v ]

(9)
= Ls−1

v + E[T s
v − E[T s

v ]|L1
v, L

2
v, · · · , Ls−1

v ]

= Ls−1
v + E[T s

v |L1
v, · · · , Ls−1

v ]− E[E[T s
v ]|L1

v, · · · , Ls−1
v ]

= Ls−1
v + E[T s

v ]− E[T s
v ]

= Ls−1
v . (11)

From the previous equation (11), we conclude that the se-

quence L1
v, L

2
v, · · · , L|S|v is the martingale sequence. Without

loss of generality, we assume L0
v = 0. Then, ∀s ∈ [S], we

have the following inequation:

|Ls
v − Ls−1

v | (10)= |Ds
v|

(9)
= |T s

v − E[T s
v ]| ≤ gsv,

where gsv = max{Zs
v − E[T s

v ], E[T s
v ]}. When we obtain the

fractional solutions from the efficient LP algorithm, E[T s
v ]

is then determined. Therefore, the consecutive items in the

martingale sequence has a constant bound, which meets the

conditions of Azuma’s inequality. Then, we have

Pr
[
L|S|v − L0

v ≥ t
]
≤ exp{− t2

2
∑|S|

s=1(g
s
v)

2
},

where t is the concentration bound. According to equation (10)

and equation (9), we have

Pr

⎡
⎣
|S|∑
s=1

T s
v −

|S|∑
s=1

E[T s
v ] ≥ t

⎤
⎦ ≤ exp{− t2

2
∑|S|

s=1(g
s
v)

2
},

which is equivalent to

Pr

⎡
⎣
|S|∑
s=1

T s
v ≤

|S|∑
s=1

E[T s
v ] + t

⎤
⎦ ≥ 1− exp{− t2

2
∑|S|

s=1(g
s
v)

2
}

= 1−O(e−t2).
(12)

For ease of description, we let Sv =
∑|S|

s=1 T
s
v , Ev =∑|S|

s=1 E[T s
v ]. After substituting the corresponding variables

in inequation (12), we have

Pr [Sv ≤ Ev + t] ≥ 1−O(e−t2), (13)

where Sv denotes the actual load of node-v, and Ev denotes

the expectation load of node-v. As LP provides a lower bound

of ILP, which is a minimization problem. ∀v ∈ [V ], we have

Ev ≤ OPT. (14)

Without loss of generality, we assume u and v are the indexes

of the maximal Sv and Ev , respectively, i.e.,

u = argmax
i

Si, (15)

v = argmax
j

Ej . (16)

Then, we have the following inequations,

SOL
(15)
= Su

(13)

≤ Eu + t
(16)

≤ Ev + t
(14)

≤ OPT + t. (17)

Based on inequation (13) and (17), we conclude that

Pr [SOL ≤ OPT + t] ≥ 1−O(e−t2).

In real scenarios, the concentration bound is acceptable given

a certain probability, e.g., 1−O(1− e−t2) = 0.9.

Theorem 2. The expected violation of constraints is 0.

Proof. All constraints are linear. And by using the linearity of

the expectation, we conclude such theorem.

We take Constraint (3) as an example. By using previous

rounding strategy, we have E[bsv] = psv . Then, we have

E[C(v)− Cv] = E[
∑

s∈[S]
Cs · bsv − Cv]

=
∑

s∈[S]
Cs · E[bsv]− Cv

=
∑

s∈[S]
Cs · psv − Cv

≤ Cv − Cv = 0,

where it refers to the expected violation of constraints.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

We use the SimPy4 simulation framework to implement the

simulation experiments. For ease of description, we regard

the image layer as the package throughout the paper and set

the following configuration parameters: The number of worker

nodes is 50. The number of available CPU cores on each node

follows an exponential distribution with a mean of 20. The size

of the package set is 100. The number of package replicas is

10. Packages are cached uniformly distributed among nodes.

The number of packages cached by each node follows an

exponential distribution with a mean of 20. The average image

deployment times derive from the preliminary experimental:

34.68s, 11.97s, and 8.81s under 0.1Gbps, 1Gbps, and 3 Gbps

network bandwidth, respectively. The number of containerized

applications is 500. The number of CPU cores required by the

application is uniformly sampled from {1, 2}. Each container

image requires a random number of packages, sampled from

an exponential distribution with a mean of 10. The data size

of the packages in an image follows Zipf distribution5, with

parameter s = 1.1. The package retrieval time is proportional

to the data size of the package. To evaluate the performance

of Clipper, we use three types of workloads: short-lived,

common-case, and long-running workloads. The execution

time of these three types of workloads on a single CPU

core follows the exponential distributions with means of 2s,

16s, and 64s, respectively. The load threshold parameter in

PASch [12] is set to 0.9 to avoid overload.

4SimPy: https://simpy.readthedocs.io/en/latest/. Accessed Feb 2021.
5Zipf’s law: https://en.wikipedia.org/wiki/Zipf’s law. Accessed Feb 2021.
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Fig. 3: Results under Various Settings for Containers

B. Experimental Results

Results for Container Deployment. To compare the de-

ployment performance of different container schedulers, we

evaluate the deployment cost of short-lived workloads under

different available bandwidths. When available bandwidth is

scarce, the deployment cost of bloated container images dra-

matically depends on the deployment strategy. Fig. 3(a) shows

that the average deployment time of Clipper is 15.07s, which is

45.9% lower than the 27.86s of spread, and 26.4% lower than

the 20.48s of PASch. As the available bandwidth increases,

the image download time drops rapidly, and the extraction

stage dominates the container deployment process. When the

available bandwidth is sufficient, Clipper improves deployment

efficiency by significantly reducing the data size of the image

layers that need to be retrieved. Compared with spread and

PASch, Clipper achieves 37.1% and 11.5% deployment time

optimizations, respectively. Experiment results confirm that

Clipper greatly optimizes container deployment performance

by considering fine-grained package affinity.

Impact of Skewed Package Distribution. To investigate

the impact of package distribution on Clipper’s performance,

we use the first 20 nodes to cache packages and clean

up the remaining 30 nodes’ packages. Fig. 3(b) shows the

number of allocated CPU cores on each node for common-

case workloads. Clipper and PASch typically prefer to assign

containers to the first 20 nodes where required packages are

cached to improve deployment efficiency. Although PASch

uses the power-of-two-choice strategy to reduce the degree of

load imbalance, 85% of the nodes with cache packages have

reached the load threshold limits. Moreover, the loads on the

7th, 9th, and 10th nodes are significantly lower than expected.

After carefully checking the software packages cached by

these three nodes, we find that they are almost all small-size

packages. PASch only considers the largest package’s affinity,

potentially ignoring the role of small-size packages, hence

regards these three nodes as trivial nodes. Moreover, the load

threshold parameter of PASch is not easy to tune to appropriate

value under diverse scenarios manually, and it dramatically

affects application execution performance. Compared with

the extreme distribution of PASch, Clipper has better stable

performance under skewed package distribution.

Results of Completion Time. As illustrated in Fig. 4, the

average completion time of Clipper consistently outperforms

alternatives under different network scenarios and diverse
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Fig. 4: Results under Various Bandwidth and Workloads

workloads. More specifically, when the available bandwidth

is scarce, the average completion times of the three types

of workloads scheduled by Clipper are 16.18s, 24.23s, and

49.12s, respectively, which are 44%, 31.9%, and 19.6% lower

than spread. As application runtime increases, the execution

period gradually dominates the container lifecycle. Clipper

tends to deploy containers to nodes with sufficient resources

rather than nodes with lower deployment costs, which sac-

rifices deployment efficiency in exchange for better exe-

cution performance. For long-running workloads, sufficient

available resources typically are the primary consideration

of the scheduler. Spread greedily deploys each container to

the node with the lowest load to achieve temporary load

balancing, resulting in sub-optimal global resource alloca-

tion. Instead of simple greedy strategies, Clipper considers

the optimal container placement scheme from the overall

perspective of resource requirements. Therefore, Clipper can

make global optimal scheduling decisions to improve resource

utilization and application execution performance. Experiment

results confirm that Clipper reduces the average application

completion time of long-running workloads by 19.6% and

7.1% under different available bandwidths compared with the

spread. PASch inherently tolerates high load imbalance, which

dramatically deteriorating the application performance of long-

running workloads. Specifically, PASch prolongs the average

application completion time of long-running workloads by

6.6% compared with the spread when bandwidth is sufficient.

VIII. CONCLUSION

In this paper, we design Clipper towards an efficient con-

tainer scheduler by jointly optimizing the cost of retrieving the

dependencies and the executions. In particular, we model the

container deployment problem as an integer linear program

and design an efficient randomized algorithm to find suitable

hosts with fine-grained affinity. Additionally, we prove the

result is concentrated on its optimum with high probability.

Simulations demonstrate that Clipper significantly outperforms

alternatives in terms of deployment performance, average

completion time, and scalability under different settings. As

future work, we plan to explore the impact of node failure

and dynamic re-balancing of already deployed containerized

applications over their lifetimes towards greater resource uti-

lization and scheduling efficiency.
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